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Abstract. In this paper we study the problem of comparing two patches of an image defined on
a Riemannian manifold, which can be defined by the image domain with a suitable metric depending
on the image. The size of the patch will not be determined a priori, and we identify it with a
variable scale. Our approach can be considered as a nonlocal extension (comparing two points) of

the multiscale analyses defined using the axiomatic approach by Álvarez et al. [Arch. Ration. Mech.
Anal., 123 (1993), pp. 199–257]. Following this axiomatic approach, we can define a set of similarity
measures that appear as solutions of a degenerate partial differential equation. This equation can be
further specified in the linear case, and we observe that it contains as a particular instance the case
of using weighted Euclidean distances as comparison measures. Finally, we discuss the case of some
morphological scale spaces that exhibit a higher complexity.
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1. Introduction. Our purpose in this paper is to compare two patches of an
image defined on a Riemannian manifold, which can be defined by the image domain
with a suitable metric depending on the image. The size of the patch will not be
determined a priori, and we identify it with a variable scale. Our approach can be
considered as a nonlocal extension (comparing two points) of the multiscale analyses
defined using the axiomatic approach in [1].

Let us review the fundamentals of that approach. A multiscale analysis represents
a given image at different scales of smoothing, the scale being related to the size of
the neighborhood which is used to give an estimate of the brightness of the picture
at a given point. It is a basic preprocessing step for shape recognition [27] (see [16, 6]
and references therein).

The systematic study of multiscale analyses for images was the purpose of the
axiomatic approach proposed in [1]. Based on a series of axioms which define the
structure of the multiscale space and a set of geometric and photometric invariants,
multiscale analyses were defined in terms of (viscosity) solutions of a parabolic equa-
tion. In the case of linear multiscale analysis they obtained the Gaussian scale space
(already proposed and studied in [28, 24, 25, 49, 18, 17, 26, 48], using also an ax-
iomatic approach in some of those papers). In addition to the Gaussian scale space,
classification covers many of the classical models that were proposed in the literature,
such as the Perona–Malik equation [34] (see also [9]), the Rudin–Osher–Fatemi model
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[36], and the mean curvature motion as proposed in [2].
Assuming the invariance under contrast changes (i.e., monotone rearrangements

of the gray levels), multiscale analyses were given in terms of geometric equations
[12, 11, 33] that diffuse the level sets of the image with functions of their principal
curvatures. Following [1, 16], we refer to them as morphological scale spaces since
they are related to a PDE formulation of mathematical morphology [39]. The case
N = 2 is of particular interest and leads to the motion of level lines by a function of
curvature [31, 13, 20, 21]. Of particular interest is the affine morphological scale space
(AMSS) [1, 37, 38, 32], which is affine invariant and corresponds to motion of level
lines by the power 1/3 of its curvature. The case of scale spaces for three-dimensional
(3D) images gives rise to geometric motions that depend on functions of the two
principal curvatures of the level surfaces [1, 43] (e.g., mean and Gaussian curvatures).
In the case of video sequences, the Galilean invariant scale spaces were characterized
in a similar way to the 3D case, and Gaussian curvature was replaced by acceleration
[1, 16, 14, 15].

Besides this unified trend, scale spaces based on anisotropic diffusion have been
the object of systematic study by Weickert [46, 45], and, although they fall into the
general set of nonlinear models described in [1], they were not axiomatically studied
there. Finally, variational models also give a different approach to image diffusion.
They are also basic ingredients in the regularization of inverse problems. Let us men-
tion here the work of Rudin, Osher, and Fatemi [36], who introduced total variation
as an image regularizer due to its ability to restore edges. A more general formulation
is given in [23, 41, 22, 40], where the authors consider images defined on Riemannian
manifolds where the metric depends on the image and reflects the anisotropy of the
underlying problem (for edge preservation, for color image restoration, for texture
analysis, etc.). Their basic energy functional is the Polyakov action, which is the
extension of the Dirichlet integral to maps between Riemannian manifolds [23, 41].

The axiomatic approach used to classify scale spaces was also used in [8] in order
to classify interpolation operators according to a set of structural requirements and
invariances. Examples are given by the Laplace equation, the AMLE, or the interpo-
lation of level lines by straight lines (related to inpainting/disocclusion [30, 29]). This
approach was later extended to image interpolation on surfaces in [7].

Our purpose in this paper is to define a multiscale comparison of images defined
on Riemannian manifolds. Given two images u, v defined in their respective image
domains (assume R

2 for simplicity), we want to compare their neighborhoods at the
points x, y ∈ R

2, respectively. The simplest way to compare them would be to compare
the two neighborhoods of x, y using the Euclidean distance. That is, let us define

(1.1) D(t, x, y) =

∫
R2

gt(h)(u(x+ h)− v(y + h))2 dh,

where gt is a given window that we assume to be Gaussian of variance t. This formula
gives an explicit comparison and assumes that the image domain is the Euclidean
plane. Let us note at this point that we could have also used the integral of u(x +
h)v(y + h) as a comparison measure. Our purpose is to define such measures in the
case of images defined on Riemannian manifolds (e.g., the image plane endowed with
an anisotropic metric, such as the structure tensor [46, 47, 4, 3, 35]). It will be shown
that these measures are given by the solution of a degenerate elliptic PDE in the
variables (x, y). Unfortunately, in general, it may not always be possible to write this
solution as an explicit formula like (1.1). Let us mention at this point that (1.1) is



MULTISCALE ANALYSIS OF SIMILARITIES 3

not an exception; it solves the equation

(1.2) Dt = ΔxD + 2Trace(D2
xyD) + ΔyD,

which is possibly the simplest case of a linear PDE expressing the multiscale com-
parison of two image patches. In the case of comparing image patches defined on
Riemannian manifolds, there will appear a large family of possibilities, derived from
the axiomatic approach. As in [1, 5], the set of axioms will include architectural
axioms and a comparison principle that permit us to define multiscale analyses as
solutions of a degenerate parabolic PDE. Further specification can be attained by in-
cluding linear or morphological assumptions. The inclusion of geometric invariances
will be subsumed under the requirement of intrinsic definition of the multiscale anal-
ysis, independent of the parameterization of the manifold. This essentially restricts
the invariances to rotation invariance in the tangent plane. The consideration of other
geometric invariance (translation or rotation) will be discussed separately for images
defined in R

N , out of the general classification.
One of the examples of linear multiscale analysis of a similarity measure is the

model

(1.3) Dt = Tr(G1(x)
−1D2

xD) + 2Tr(G1(x)
−1/2G2(x)

−1/2D2
xyD) +Tr(G2(y)

−1D2
yD),

where Mi = (RN , Gi(x)), i = 1, 2, are two Riemannian manifolds, and x ∈ M1,
y ∈ M2. In particular, if we assume that the metrics are constant in both images,
then the model becomes

(1.4) Dt = Trace(AtAD2
xD) + 2Trace(ABtDxyD) + Trace(BtBD2

yD),

where A,B are two N × N matrices. The multiscale similarity measure C(t, x, y) =∫
RN gt(z)C(0, x+Ah, y+Bh) dh, where gt is the Gaussian of scale t, and C(0, x, y) =
(I(x) − J(y))2, satisfies (4.26).

Let us finally say that from the mathematical point of view the basic ingredients
are the papers [1, 8, 7, 5], and our results are an extension of them.

This paper contains mostly the theoretical results that define multiscale analysis
for image comparison. From the analysis we will single out several examples, mostly
linear examples, and the case of some morphological scale spaces whose complexity
is much higher. The use of these comparison measures (distances) for the purpose of
computing disparities, correspondences, or determining the most similar patch will be
the object of a subsequent paper [10]. We include in the last section of the present
paper a preliminary result illustrating the comparison measure of the example above
(see also Remark 13).

Let us finally summarize the plan of the paper. In section 2 we collect some basic
notation and definitions about Riemannian manifolds. In section 3 we define the basic
set of axioms satisfied by multiscale analyses for image similarity measures defined on
Riemannian manifolds, and we express them in terms of solutions of an (eventually
degenerate) parabolic equation. In section 4 we consider the case of linear multiscale
analyses, naturally obtaining that they are expressed as solutions of a linear equation
generalizing the case of (1.2). In section 4.1 we will specify our study in the case
of RN , and the conformal case in R

N will be studied in section 4.2 (the Euclidean
case will be the object of section 4.3). Finally, in section 5 we consider multiscale
analyses for image similarity measures that commute with contrast changes, leading
to morphological scale spaces that are expressed by functions of curvature operators.
In this case, their interpretation is much more complex because it probably reflects the
correlations between directions of level lines of both image patches under comparison.
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2. Preliminaries. We collect in this section some basic notation and definitions
about Riemannian manifolds.

Let (N , h) be a smooth Riemannian manifold in R
N+1. As a particular case we

can consider N = R
N (or a domain in R

N ) endowed with a general metric hij . As
usual, given a point η ∈ N , we denote by TηN the tangent space to N at the point
η. By T ∗

ηN we denote its dual space.

Let η be a point onN , let U ⊆ R
N be an open set containing 0, and let ψ : U → N

be any coordinate system such that ψ(0) = η. Let hij(η) and ΓN ,k
ij (η) (indices i, j, k

run from 1 to N) denote, respectively, the coefficients of the first fundamental form
of N and the Christoffel symbol computed in the coordinate system ψ around η. For
simplicity we shall denote byH(η) the (symmetric) matrix (hij(η)) and by ΓN ,k(η) the

matrix formed by the coefficients (ΓN ,k
ij (η)), i, j, k = 1, . . . , N . We shall use Einstein’s

convention that repeated indices are summed, and we denote (a, b) = aib
i.

The scalar product of two vectors v, w ∈ TηN will be denoted by 〈v, w〉η , and
the action of a covector p∗ ∈ T ∗

ηN , on a vector v ∈ TηN , will be denoted by (p∗, v).
Let ψ : U → N be a coordinate system such that ψ(0) = η, and hij(η) are the
coefficients of the first fundamental form at η ∈ N in ψ. Then, if v, w ∈ TηN , we
have 〈v, w〉ξ = hij(η)v

iwj , where vi, wi are the coordinates of v, w in the basis ∂
∂xi |η of

TηN . Using this basis for TηN and the dual basis on T ∗
ηN , if p∗ ∈ T ∗

ηN and v ∈ TηN ,

we have (p∗, v) = piv
i. Notice that we may write (p∗, v) = hij(η)p

ivj , where pi are
the coordinates of the vector p associated to the covector p∗. The relation between
both coordinates is given by

(2.1) pi = hij(η)p
j or pi = hij(η)pj ,

where hij(η) denotes the coefficients of the inverse matrix of hij(η). By a slight abuse
of notation, we shall write (2.1) as

p∗ = Hp or p = H−1p∗.

In this way H : TηN → T ∗
ηN . In the case that ψ is a geodesic coordinate system,

the matrix H is the identity matrix I = (δij), and I maps vectors to covectors, i.e.,
I : TηN → T ∗

ηN (with the same coordinates in the dual basis). We shall denote by
I−1 the inverse of I, mapping covectors to vectors.

If U ⊆ R
N , and ψ : U → N is a coordinate system with ψ(0) = η, then ψ ◦

dψ(0)−1 : U ′ ⊆ TηN → N is a new coordinate system. If we identify T0U with R
N

and {ei} denotes its canonical basis, then e′i = dψ(0)ei satisfy 〈e′i, e′j〉 = hij(η). From
now on, we shall use this identification; thus we shall interpret that any coordinate
system around a point η ∈ N is defined on a neighborhood of 0 in the tangent space
TηN .

Maps. Symmetric maps. Quadratic forms. We shall also use this coordinate
system to express a bilinear map Â : TηN × TηN → R. Indeed, if (Aij) is the

matrix of Â in this basis, and v, w ∈ TηN , we may write Â(v, w) = Aijv
jwi. If

Ai
j = hik(η)Akj , then Ai

j determines a map called A : TηN → TηN such that

Â(v, w) = 〈Av,w〉 = (HAv,w). Observe that H(η)A : TηN → T ∗
ηN . Observe also

that our notation Ai
j already indicates that A = (Ai

j) maps vectors to vectors. In
our notation, we shall not distinguish between matrices and maps.

As usual, we say that a linear map C : TηN → T ∗
ηN is symmetric if (Cv,w) =

(Cw, v) for any v ∈ TηN , w ∈ TηN . From now on, we shall use the notation

SMη(N ) := {A : TηN → T ∗
ηN , A is symmetric}.
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We shall also write

Sη(N ) := {A : TηN → TηN , H(η)A ∈ SMη(N )}.

If we want to stress that H(η) is the metric in TηN , we shall write (TηN , H(η))
and denote SMη(N , H), Sη(N , H) instead of SMη(N ), Sη(N ), respectively.

If A ∈ Sη(N ), v ∈ TηN , c ∈ R, we define the quadratic polynomial

(2.2) Q(x) =
1

2
〈Ax, x〉 + 〈v, x〉+ c, x ∈ TηN .

Note that

(2.3) Q(x) =
1

2
(A′x, x) + (p, x) + c, x ∈ TηN ,

where A′ = H(η)A ∈ SMη(N ), p = H(η)v ∈ T ∗
ηN .

Notice that if A : TηN → TηN , we define At : T ∗
ηN → T ∗

ηN by

(Atp, v) = (p,Av) ∀v ∈ TηN , p ∈ T ∗
ηN .

We define At,h : TηN → TηN by

〈At,hv, w〉 = 〈v,Aw〉 ∀v, w ∈ TηN .

From now on, when the point η ∈ N is understood, we write H instead of H(η).
Notice that HAt,h = AtH .

If A ∈ Sη(N ), then HA ∈ SMη(N ) and (HAv,w) = (v,HAw); that is ,〈Av,w〉 =
〈v,Aw〉. That is, At,h = A.

Rotations in the tangent space. Let us define a rotation R : TηN → TηN as a
linear map that satisfies

〈Rv,Rw〉 = 〈v, w〉 ∀v, w ∈ TηN .

Notice that rotations satisfy

RtHR = H.

Note also that isometries (rotations) satisfy Rt,h = R−1.
Let B : TηN → TηN be a matrix such that BI−1Bt = H−1. Thus BtHB =

I, and B is mapping an orthonormal basis of (TηN , I) to an orthonormal basis of
(TηN , H(η)).

If R : TηN → TηN is a rotation, then

(B−1RB)t,IB−1RB = I.

That is, B−1RB is a classical rotation.
Gradient and Hessian. Given a function u on N , let us denote by DNu and

D2
Nu the gradient and Hessian of u, respectively. In a coordinate system DNu is the

covector ∂u
∂xi , and D

2
Nu is the matrix ∂2u

∂xi∂xj −ΓN ,k
ij

∂u
∂xk which acts on tangent vectors.

Thus, with this notation D2
Nu(η) : TηN×TηN → R is a bilinear map (η ∈ N ) and is a

symmetric matrix in coordinates. Let us write ∇Nu, the vector of coordinates hij ∂u
∂xj .

Then |∇Nu(η)|2η = 〈∇Nu(η),∇Nu(η)〉η. To simplify our notation we shall write Du
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and ∇u instead of DNu and ∇Nu. The vector field ∇u satisfies 〈∇u, v〉η = du(v),
v ∈ TηN , du being the differential of u.

The manifold N = M1 ×M2. Let (Mi, gi) be a smooth Riemannian manifold
with metric gi, i = 1, 2. Let Γ(i) be the connection on Mi. We shall work here with a
manifold N = M1×M2 with the metric h = g1×g2, so that TξN = Tξ1M1×Tξ2M2,
ξ = (ξ1, ξ2) ∈ M1×M2. If (vi, wi) ∈ Tξ1M1×Tξ2M2, ξ = (ξ1, ξ2) ∈ M1×M2, then
we consider the metric

〈(v1, w1), (v2, w2)〉ξ = 〈v1, v2〉ξ1 + 〈w1, w2〉ξ2 = (G1(ξ1)v1, v2) + (G2(ξ2)w1, w2).

With a slight abuse of notation, let us write G(ξ) = diag(G1(ξ1), G
2(ξ2)) instead of

H(ξ).
Let ξ = (ξ1, ξ2) ∈ M1 × M2. Let us consider a coordinate system of the form

ψ = (ψ1, ψ2) : U1 × U2 → M1 × M2 with ψi(0) = ξi, Ui being a neighborhood of
0 in R

N . Write x ∈ U1, y ∈ U2. Let us denote the connection on M1 × M2 as
Γ := Γ(1) ⊗ Γ(2) with indices i, j, k ∈ {1, . . . , 2N} with ξi = ξ1i, i ∈ {1, . . . , N}, and
ξi = ξ2(i−N), i ∈ {N +1, . . . , N}. Denote the coordinates as zi, i ∈ {1, . . . , 2N}, with
zi = xi, i ∈ {1, . . . , N}, and zi = yi−N , i ∈ {N + 1, . . . , N}. Using the formula

(Γ(1) ⊗ Γ(2))kij =
1

2
hkl
(
∂hjl
∂zi

+
∂hil
∂zj

− ∂hij
∂zl

)
,

we obtain

(Γ(1) ⊗ Γ(2))k(x, y) =

(
Γ(1)k(x) 0

0 Γ(2)k(y)

)
.

We denote by SMξ(N ) the set of symmetric matrices of size 2N × 2N in N =
M1 ×M2.

A priori connections on N = M1 × M2. This is an important concept in this
paper and we need to clarify it. Suppose that both manifolds M1 and M2 coincide
with R

N endowed with the Euclidean metric. Let u, v be two given images in R
N .

Then it would be standard to use the L2 distance to compare the patches centered at
x and y,

(2.4) D(t, x, y) =

∫
RN

gt(h)(u(x + h)− v(y + h))2 dh,

where gt is a given window that we assume to be Gaussian of variance t. But if the
image v is rotated, we could also use the L2 distance between u and a rotated version
of v (around y), namely,

(2.5) D(t, x, y) =

∫
RN

gt(h)(u(x + h)− v(y +Rh))2 dh.

We admit that this decision is taken a priori and is done thanks to an operator that
connects the tangent plane at both points.

Let ξ = (ξ1, ξ2) ∈ N = M1 × M2. Let us consider a coordinate system of the
form ψ = (ψ1, ψ2) : U1 × U2 → M1 ×M2 with ψi(0) = ξi, Ui being a neighborhood
of 0 in R

N .
Definition 2.1. We say that P (ξ), ξ = (ξ1, ξ2) ∈ N , is an a priori connection

map in N if P (ξ) : (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)) is an isometry, i.e.,

〈P (ξ)v, P (ξ)w〉G2(ξ2) = 〈v, w〉G1(ξ1) ∀v, w ∈ Tξ1M,



MULTISCALE ANALYSIS OF SIMILARITIES 7

and we assume also that the map is differentiable in ξ.
Given an a priori connection P (ξ) : (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)), we can

also define its inverse P (ξ)−1 : (Tξ2M2, G2(ξ2)) → (Tξ1M1, G1(ξ1)). For simplicity,
and understanding that the arguments in P say if we go from M1 to M2 or inversely,
we denote P (ξ2, ξ1) = P (ξ1, ξ2)

−1, we have

(2.6) P (ξ2, ξ1)P (ξ1, ξ2) = I.

Let us note that if the (orientable) manifold M1 = M2 = M admits an a
priori connection (into itself), then there is a section of the frame bundle (bundle of
orthonormal frames). This is equivalent to saying that there is a section of the bundle
of reference systems. This is the notion of parallelizable manifolds. The manifolds
(RN , g(x)) are parallelizable. If M has dimension 2, then M is parallelizable if and
only if its Euler–Poincaré characteristic is 0 [44]. Any orientable manifold of dimension
3 is parallelizable [42].

Remark 1. Note that if we have a complete manifold with empty cut locus, we
can define the a priori connection in it by parallel transport without ambiguities.

Remark 2. Note that if P (ξ) is an a priori connection and we give two maps
R : M1 → Isom(TM1), R̄ : M2 → Isom(TM2), then R̄(ξ2)P (ξ)R(ξ1) is also an a
priori connection.

In coordinates, P (ξ) expresses the a priori connection in the coordinate system
ψ1 → ψ2. The isometry property can be written as

(P (ξ)tG2(ξ2)P (ξ)v, w) = (G1(ξ1)v, w),

where P (ξ) is expressed in the basis of Tξ1M1 associated to the metric G1(ξ1) and
the basis of Tξ2M2 associated to the metric G2(ξ2). Then

(2.7) P (ξ)tG2(ξ2)P (ξ) = G1(ξ1).

Let us compute the a priori connection in another coordinate system. Let ψ =

(ψ1, ψ2) be another coordinate system around ξ. Let Gi(ξi), G
i
(ξi), i = 1, 2, be

the metric matrices represented in the coordinate system ψi, ψi, respectively. Let
B

Gi,G
i(ξi) = D(ψ−1

i ◦ ψi)(0), i = 1, 2, and BG,G(ξ) = (B
G1,G

1(ξ1), BG2,G
2(ξ2)). Note

that B
Gi,G

i(ξi) : (TξiMi, G
i
(ξi)) → (TξiMi, Gi(ξi)) is such that

(2.8) B
Gi,G

i(ξi)
tGi(ξi)BGi,G

i(ξi) = G
i
(ξi).

Note also that all matrices here are uniquely defined.
Using (2.8), we express (2.7) as

(2.9)

P t(ξ)B
G2,G

2(ξ2)
−tG

2
(ξ2)BG2,G

2(ξ2)
−1P (ξ) = B

G1,G
1(ξ1)

−tG
1
(ξ1)BG1,G

1(ξ1)
−1.

If we define

(2.10) P (ξ) := B
G2,G

2(ξ2)
−1P (ξ)B

G1,G
1(ξ1),

then P (ξ) is an a priori connection in the coordinate system ψ1 → ψ2, P (ξ) : (Tξ1M1,

G
1
(ξ1)) → (Tξ2M2, G

2
(ξ2)). Indeed, we can express (2.9) as

(2.11) P
t
(ξ)G

2
(ξ2)P (ξ) = G

1
(ξ1),
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which is the isometry property defining a priori connections. We say that P (ξ) is the
derived a priori connection from P (ξ) and ψ.

We can rewrite (2.10) as

(2.12) B
G2,G

2(ξ2)P (ξ) = P (ξ)B
G1,G

1(ξ1),

and we see that both maps B
G1,G

1(ξ1) and BG2,G
2(ξ2) reflect the same rotation when

expressed in the corresponding a priori connections P (ξ) and P (ξ), respectively.
Definition 2.2. We say that the coordinate systems ψ, ψ are P (ξ)-related if

P (ξ) is defined by (2.10). We will also say that they are R-related.
Let us consider the case where M1 = M2 = M and P (ξ) is an internal a priori

connection given from parallel transport between ξ1 and ξ2, which is an isometry.
Then one can define P (ξ) by parallel transport expressed in the coordinate systems
ψ1, ψ2.

Generation of a priori connections. Fix a geodesic coordinate system around each
point of Mi. Ii(ξi) is referred to this system for each ξi ∈ Mi. For each ξ ∈ N , let
us consider an isometry map (assuming that it exists)

Q(ξ) : (Tξ1M1, I1(ξ1)) → (Tξ2M2, I2(ξ2)).

Call Isom((TM1, I1), (TM2, I2)) this set of maps. Let us note that this is nothing
else than an a priori connection. We just have one concept, and we express it in
different coordinate systems.

Thus what we are going to do is to give the a priori connection Q in a geodesic
coordinate field GS and derive its expression in another coordinate system field.

Let Bi(ξi) : (TξiMi, Ii(ξi)) → (TξiMi, Gi(ξi)) be the corresponding canonical
maps connecting a geodesic coordinate system GS around ξi to (TξiMi, Gi(ξi)). Thus

Bi(ξi)
tGi(ξi)B

i(ξi) = Ii(ξi).

Note that the map Bi(ξi) is uniquely defined by the coordinate systems. Changing
(rotating) the geodesic coordinate system, we get a different matrix.

Let Q(ξ) ∈ Isom((TM1, I1), (TM2, I2)), where each I is referred to GS, and let
us define

P (ξ) := B2(ξ2)Q(ξ)B1(ξ1)
−1.

Then P (ξ) is an a priori connection map.
Let GS be another geodesic coordinate system field. LetQ(ξ) : Isom((TM1, I1) →

(TM2, I2)), where each I is referred to GS. LetBi
(ξi) : (TξiMi, Ii(ξi)) → (TξiMi, G

i
(ξi))

be the corresponding map connecting a geodesic coordinate system GS around ξi to

(TξiMi, G
i
(ξi)). Thus

B
i
(ξi)

tG
i
(ξi)B

i
(ξi) = Ii(ξi).

Note that the map B
i
(ξi) is uniquely defined by the coordinate systems. Changing

(rotating) the geodesic coordinate system, we get a different matrix. Note that from

the above identities, it is easy to check thatBi(ξi)
−1B

Gi,G
i(ξi)B

i
(ξi) : (TξiMi, Ii(ξi)) →

(TξiMi, Ii(ξi)) is a (classical) rotation.
Let us define

P (ξ) := B
2
(ξ2)Q(ξ)B

1
(ξ1)

−1.
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Then P (ξ) is an a priori connection map.
Let us express that P (ξ) is the derived connection from P (ξ) in terms of Q(ξ)

and Q(ξ). Indeed, P (ξ) is the derived connection from P (ξ) and is written as (2.10).
Introducing the definitions of P (ξ) and P (ξ) into (2.10), we see that Q(ξ) is derived
from Q(ξ) if and only if

(2.13) Q(ξ) = [B2(ξ2)
−1B

G2,G
2(ξ2)B

2
(ξ2)]

−1Q(ξ)[B1(ξ1)
−1B

G1,G
1(ξ1)B

1
(ξ1)].

One interprets this by saying that [B2(ξ2)
−1B

G2,G
2(ξ2)B

2
(ξ2)] expresses the same

Euclidean rotation in different coordinate systems.
When is Q(ξ) = Q(ξ)? It is when we use the same coordinate systems for the

identity maps appearing in Bi(ξi) : (TξiMi, Ii(ξi)) → (TξiMi, Gi(ξi)) and in B
i
(ξi) :

(TξiMi, Ii(ξi)) → (TξiMi, G
i
(ξi)), that is, when GS = GS.

Related rotations. Let us consider a coordinate system field and an a priori con-
nection P (ξ) : (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)) in that system field. Let us

consider a second coordinate system field with metric G
i
(ξi) = Gi(ξi), i = 1, 2, for

each ξi ∈ Mi so that B
Gi,G

i(ξi) is an isometry field. Let Ri(ξi) := B
Gi,G

i(ξi). Let

P (ξ) be the derived connection. Then (2.12) can be written as

(2.14) R2(ξ2) = P (ξ)R1(ξ1)P (ξ)
−1.

We say that (R1(ξ1), R
2(ξ2)) are P -related orR-related, and we callR = (R1(ξ1), R

2(ξ2))
a diagonally related rotation (or just a diagonal rotation if no confusion arises).

Related germs of functions on N = M1 ×M2. Let Cb(N ) denote the space of
bounded continuous functions in N with the maximum norm. We think of Cb(N ) as
the space of similarity functions on N = M1 ×M2. We denote by C∞

b (N ) the space
of infinitely differentiable functions on N .

Let C ∈ Cb(N ). Let us denote

(C,ψ)(x, y) = C(ψ1(x), ψ2(y)) ∀(x, y) ∈ U1 × U2.

Thus, we can say that ψ = (ψ1, ψ2) and ψ = (ψ1, ψ2) are R-related if (2.14) holds. If
ψ is R-related to ψ, we write (C,ψ) as R(C,ψ). Note that R(C,ψ) is a linear map
for the restriction of functions in Cb(N ) to a neighborhood of (0, 0).

Gradient and Hessian. We denote by SMξ(N ) the set of symmetric matrices of
size 2N × 2N in N = M1 ×M2. In coordinates, we denote DNC = (DxC,DyC) by

D2
NC =

(
DN ,xxC DN ,xyC
DN ,xyC DN ,yyC

)
.

In coordinates, with i, j, k ∈ {1, . . . , N},

D2
NC =

(
∂2C

∂xi∂xj
∂2C

∂xi∂yj

∂2C
∂yj∂xi

∂2C
∂yi∂yj

)
−
(

Γ(1)k(x) ∂C
∂xk 0

0 Γ(2)k(y) ∂C
∂yk

)
.

3. Multiscale analysis of image similarity measures. For simplicity, we
shall write N = M1 × M2. The metric will be denoted by g = g1 × g2, and
G(ξ), G1(ξ1), G

2(ξ2) will be the corresponding matrices, ξ = (ξ1, ξ2) ∈ N . Let
(κ) := κn be an increasing sequence of nonnegative constants.

Q((κ)) := {C ∈ C∞
b (N ) : ‖DαC‖∞ ≤ κn ∀n ≥ 0 ∀|α| ≤ n}.
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As usual, O(f) (resp., o(f)) will denote any expression which is bounded by

C|f | for some constant C > 0 (resp., such that o(f)
|f | → 0 as f → 0). Assume

that Tt : Cb(N ) → Cb(N ) is a nonlinear operator for any t ≥ 0. We shall denote
C(t, x, y) = TtC(x, y), C ∈ Cb(N ). Assume that we are given an a priori connection
P on N .

Our motivation for the proposed set of axioms is the same as in the pioneering
work of [1], to which we refer the reader for a detailed justification.

Architectural axioms.

[Recursivity] T0(C) = C, Ts(TtC) = Ts+tC ∀s, t ≥ 0, ∀C ∈ Cb(N ).

The recursivity axiom is a strong version of causality which implies that the
similarity measure at a coarser scale can be deduced from a finer one, which is a
natural property in image analysis and a sound hypothesis in human vision [1].

[Infinitesimal generator]
Th(C,ψ)(ξ) − (C,ψ)(ξ)

h
→ (A(C), ψ) as h→ 0+

for any C ∈ C∞
b (N ) and any coordinate system ψ = (ψ1, ψ2) around ξ. We assume

that

(3.1) Tt(R(C,ψ))(ξ) = R(Tt(C), ψ)(ξ) + o(t) = Tt(C)(ξ) + o(t) as t→ 0+

for any C ∈ Cb(N ), any coordinate system ψ = (ψ1, ψ2), and any R’s which are P -
related rotations. We have denoted by R(C,ψ) the function in the coordinate system
ψ which is P (ξ)-related (or R-related) to ψ.

Writing (3.1) in terms of the generator A, we have

R(C,ψ)(0) + tA(R(C,ψ))(0) + o(t) = R((C,ψ) + tA(C,ψ))(0) + o(t)

= C(ξ) + tA(C,ψ)(0) + o(t).

Using the linearity of R(C,ψ), dividing by t, and letting t→ 0+, we obtain

(3.2) A(R(C,ψ))(0) = RA(C,ψ)(0) = A(C,ψ)(0)

for any C ∈ Cb(N ), any coordinate system ψ = (ψ1, ψ2), and any R P -related rota-
tions.

Remark 3. In Tt(R(C,ψ))(ξ) the a priori connection is expressed in the coordinate
system ψ = (ψ1, ψ2). In R(Tt(C), ψ)(ξ) = (Tt(C), ψ)(ξ) the a priori connection is
expressed in the coordinate system ψ = (ψ1, ψ2). That is, the infinitesimal generator
axiom says that both expressions are the same (intrinsic character of Tt) when the
coordinate systems are R-related.

Remark 4. The infinitesimal generator axiom contains the invariance with respect
to diagonal rotations in the tangent plane of M1×M2. When (Mi, Gi) = (M, G) =
(RN , I) it amounts to invariance with respect to Euclidean diagonal rotations in R

2N .
That is, Tt(RC) = RTt(C) for all t ≥ 0, for all C ∈ C∞

b (RN × R
N ), and for all

R ∈ O(N) (Euclidean rotations in R
N ), where RC(x, y) = C(Rx,Ry).

Remark 5. When M = R
N with the Euclidean metric the axiom is just

[Infinitesimal generator]
ThC − C

h
→ A(C)ash → 0 + .
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This holds for any C ∈ C∞
b (RN × R

N ).
In some sense the coordinate system around each point is always the same—the

canonical system; they are related by the identity.

[Regularity axiom] ‖Tt(C+hC̃)−(Tt(C)+hC̃)‖∞ ≤Mht ∀h, t ∈ [0, 1], ∀C, C̃ ∈ Q((κ)),

where the constant M depends on Q((κ)).

[Locality] Tt(C)(x) − Tt(C̃)(x) = o(t) as t→ 0+, x ∈ R
N ∀C, C̃ ∈ Cb(N )

such that DαC(x) = DαC̃(x) for all multi-indices α.
Comparison principle.

[Comparison principle] TtC ≤ TtC̃ ∀t ≥ 0, ∀C, C̃ ∈ C∞
b (N )

such that C ≤ C̃.
The comparison principle is an order-preserving property. It means that if a sim-

ilarity measure is always smaller than another, then applying a multiscale analysis
does not invert this relation. Intuitively, the multiscale analysis produces low resolu-
tion versions of the similarity measures, which should be consistent with the initial
ones.

Morphological axioms.

[Gray level shift invariance] Tt(0) = 0, Tt(C + κ) = Tt(C) + κ

∀t ≥ 0, ∀C ∈ C∞
b (N ), ∀κ ∈ R.

[Gray scale invariance] Tt(f(C)) = f(Tt(C)) ∀t ≥ 0, ∀C ∈ C∞
b (N ),

and for any strictly increasing function f : R → R.
Let us clarify that in this work the morphological axioms are required not for the

images but for the similarity measures. We have followed the same terminology as in
[1, 5].

Theorem 3.1. Let Tt be a multiscale analysis satisfying the recursivity, in-
finitesimal generator, and regularity axioms. Then A(Cr) → A(C) in Cb(N ) if
Cr, C ∈ C∞

b (N ) and DαCr → DαC in Cb(N ) for all α with |α| ≥ 0.
The proof follows the same lines of the corresponding result in [1], particularly

section 3.1, Theorem 1 (see also Theorem 3.1 in [5]), and so we shall omit it.
The following results were proved in [1] (section 3.2, Theorem 2) for multiscale

analysis on images and extended to images on manifolds in [5] (particularly in Theorem
3.2). We follow the presentation in [5].

Theorem 3.2. Let Tt be a multiscale analysis satisfying all architectural axioms
and the comparison principle. Then there exists a function F : SMξ(N )×T ∗

ξ N ×R×
N → R increasing with respect to its first argument such that

Tt(C,ψ)− (C,ψ)

t
→ F (D2(C ◦ψ)(0), D(C ◦ψ)(0), C(ξ), ξ, G,Γk) in Cb(N ) as t→ 0+

for all C ∈ C∞
b (N ), ψ being a coordinate system around ξ ∈ N . The function F

is continuous in its first three arguments. If we assume that Tt is gray level shift
invariant, then the function F does not depend on u.
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Recall that we have denoted G = (G1, G2) and Γ = Γ(1) ⊗ Γ(2). Notice that we
did not denote explicitly the arguments for G,Γk. Notice that the first argument in
F is a symmetric map from TξN to T ∗

ξ N .

Remark 6. We could also have written F as a function F̂ : Sξ(N )×TξN×R×N →
R, so that F̂ (A, v, c, ξ, G,Γk) = F (GA,Gv, c, ξ, G,Γk).

Let us make precise our statement that the function F is increasing in its first
argument.

Lemma 3.3. Let ξ ∈ N , and let ψ : U → N be a coordinate system around ξ.
Let G,Γk be the metric coefficients and the Christoffel symbols of N in the coordinate
system ψ at the point ξ. Let A1, A2 : TξN → T ∗

ξ N be two matrices such that A1, A2

are symmetric, p ∈ T ∗
ξ N , c ∈ R. If A1 ≤ A2, then

F (A1, p, c, ξ, G,Γ
k) ≤ F (A2, p, c, ξ, G,Γ

k).

Thus F is elliptic.
Theorem 3.4. Let Tt be a multiscale analysis satisfying the all architectural

axioms, the comparison principle, and gray level shift invariance. If C(t, ξ) = TtC(ξ),
then u is a viscosity solution of

(3.3) Ct = F (D2
NC,DC, ξ,G,Γ

k),

with C(0, ξ) = C(ξ).
The proof that C(t, ξ) = TtC(ξ) is the viscosity solution of (3.3) follows as in [1,

section 3.2, Theorem 2], [16, Chapters 19 and 20].
The next lemma is crucial in what follows. It relates the matrices and vectors

defining a quadratic polynomial in two coordinate systems around a point ξ ∈ M.
For a proof, we refer the reader to [7] (particularly Lemma 2).

Lemma 3.5. Let U,U be two neighborhoods of 0 in R
2N , and let ψ : U → N ,

ψ : U → N be two coordinate systems around the point ξ ∈ N , i.e., ψ(0) = ξ,
ψ(0) = ξ. Assume that the change of coordinates Ψ = ψ−1 ◦ ψ : U → U is a

diffeomorphism. Let G,Γ = Γ(1) ⊗ Γ(2) (resp., G,Γ = Γ
(1) ⊗ Γ

(2)
) be the metric

coefficients and the Christoffel symbols of N in the coordinate system ψ (resp., ψ) at
the point ξ. Let Q : U → R be the quadratic polynomial

(3.4) Q(v) =
1

2
(GAv, v) + (p, v) + c.

Let Q(v̄) := (Q ◦Ψ)(v̄). Then Q(v̄) = Q′(v̄) +O(|v̄|3) in a neighborhood of 0, where
Q′ is the quadratic polynomial

(3.5) Q′(v̄) =
1

2
(GB−1ABv̄, v̄)+

1

2
(Γ(Btp)(v̄), v̄)− 1

2
(BtΓ(p)(Bv̄), v̄)+ (Btp, v̄)+ c,

and B = DΨ(0).
Note that we have denoted v ∈ TξN , p ∈ (TξN )∗, A ∈ Sξ(N ).
We are interested in the application of this lemma when ψ = (ψ1, ψ2), ψ =

(ψ1, ψ2), so that B = (B1, B2), where B1 = D(ψ−1
1 ◦ψ1)(0) and B

2 = D(ψ−1
2 ◦ψ2)(0).

The map B satisfies

(3.6) BtG = GB−1.

In coordinates, for i = 1, 2, we have

(3.7) (Bi)tGi(ξi) = G
i
(ξi)(B

i)−1.
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Proposition 3.6. Let Tt be a multiscale analysis on N satisfying the architec-
tural axioms and the comparison principle. Let ψ = (ψ1, ψ2) : U = U1×U2 → N be a
coordinate system around ξ ∈ N . Let G,Γ be the metric coefficients and the Christof-
fel symbols of N in the coordinate system ψ at the point ξ. For any symmetric matrix
X = (Xij) : (TξN , I) → (T ∗

ξ N , I) in SMξ(N , I), q ∈ (T ∗
ξ N , I), and a ∈ R, let us

define the function

(3.8) H(X, q, a, ξ) = F (X, q, a, ξ, I, 0);

that is, H is the function F obtained when using a geodesic coordinate system. Then

(3.9) F (A, p, a, ξ,G,Γk) = H(Bt(A− Γ(p))B,Btp, c, ξ)

for any matrix A ∈ SMξ(N ), and any covector p, where BBt = G−1. Moreover, the
function H satisfies

(3.10) H(A′, p′, c, ξ) = H(RtA′R,Rtp′, c, ξ),

where A′ : (TξN , I) → (T ∗
ξ N , I) is any matrix in SMξ(N , I), p′ ∈ (T ∗

ξ N , I), and R
is any Euclidean rotation in (TξN , I) of the form R = diag(R0, R0) where R0 is an
Euclidean rotation in (TξM, I).

Our notation BBt = G−1 contains a slight abuse of notation, since B : TξN →
TξN and Bt : T ∗

ξ N → T ∗
ξ N . The correct notation should be BI−1Bt.

Although the proof is essentially contained in Proposition 3.6 in [5], the statement
is slightly different because rotations in TξN have a diagonal form. We give the
detailed proof in order to clarify this. This is due to our assumption in the infinitesimal
generator axiom of the covariance with respect to R-related coordinate systems.

Proof. We use the notation of Lemma 3.5, so that B = (B
G1,G

1(ξ1), BG2,G
2(ξ2)).

Note that the quadratic forms Q and Q are P (ξ)-related (or R-related). For conve-

nience then we use the symmetric map GA. Since Q◦ψ−1 = Q◦ψ−1
in ψ(U)∩ψ(U),

with a slight abuse of notation (act Tt on polynomials), using the infinitesimal gener-
ator axiom, we have

(3.11) lim
t→0

Tt(Q ◦ ψ−1)(ξ)−Q ◦ ψ−1(ξ)

t
= F (GA, p, c, ξ, G,Γk)

and

(3.12)
lim
t→0

Tt(Q ◦ ψ−1
)(ξ) −Q ◦ ψ−1

(ξ)

t

= F (GB−1AB + Γ(Btp)−BtΓ(p)B,Btp, c, ξ, G,Γ
k
);

that is, they are the expressions in the corresponding coordinate system, and they
coincide since both are P (ξ)-related; i.e., we have

(3.13) F (GA, p, c, ξ, G,Γk) = F (GB−1AB + Γ(Btp)−BtΓ(p)B,Btp, c, ξ, G,Γ
k
)

or, using (3.6),

(3.14) F (GA, p, c, ξ, G,Γk)) = F (Bt(GA− Γ(p))B + Γ(Btp), Btp, c, ξ, G,Γ
k
).
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Now, for any symmetric matrix X = (Xij) ∈ SMξ(N ), any q ∈ T ∗
ξ N , and a ∈ R, let

us define the function F̃ by the identity

(3.15) F̃ (X, q, a, ξ,G,Γk) = F (X + Γ(q), q, a, ξ, G,Γk).

In terms of F̃ , (3.14) can be written as

(3.16) F̃ (GA − Γ(p), p, c, ξ, G,Γk) = F̃ (Bt(GA− Γ(p))B,Btp, c, ξ, G,Γ
k
).

By varying the quadratic polynomials, the above equation holds for any matrix A =
(Ai

j) such that GA ∈ SMξ(N ), any diagonal invertible matrix B : TξN → TξN (bet-

ter B = (B1(ξ1), B
2(ξ2)) = (B

G1,G
1(ξ1), BG2,G

2(ξ2)) and Bi(ξi) : (TξMi, G
i
(ξi)) →

(TξMi, Gi(ξi))), and any p ∈ TξN . Here BtG = GB−1. This holds in particular for
any diagonal rotation R = (R1, R2) (related by (2.12), and we use this convention in
what follows) in TξN (so that RtGR = G):

(3.17) F̃ (GA− Γ(p), p, c, ξ, G,Γk) = F̃ (Rt(GA − Γ(p))R,Rtp, c, ξ, G,Γ
k
).

Now, we choose ψ as a geodesic coordinate system around ξ for which G = I, and
Γk = 0. In this case, (3.6) can be written as G = BtIB = BtB. We may write (3.16)
as

(3.18) F̃ (IA, p, c, ξ, I, 0) = F̃ (BtIAB,Btp, c, ξ, BtB,Γ
k
),

and this identity holds for any symmetric matrix IA ∈ SMξ(N , I), any vector p ∈
T ∗
ξ M2, and any diagonal invertible matrix B (the metric G = BtB). Once again, we

change variables and write A′ = BtIAB, p′ = Btp, B′ = B−1. Then we write (3.18)
as

(3.19) F̃ (A′, p′, c, ξ, G,Γ
k
) = F̃ (B′tA′B′, B′tp′, c, ξ, I, 0),

and this identity holds for any symmetric matrix A′ : TξN → T ∗
ξ N in SMξ(N , G),

any p′ ∈ T ∗
ξ N , and any diagonal invertible matrix B′ : TξN → TξN , where G =

(B′t)−1B′−1. This clearly shows that F̃ does not depend on G and Γk in the last two
arguments. All its dependence is contained in the first argument. Let us introduce
the function H to make this explicit.

Now, for any symmetric matrix X = (Xij) : (TξN , I) → (T ∗
ξ N , I) in SMξ(N , I),

any q ∈ (T ∗
ξ N , I), and scalar a, let us define the function H by the identity

(3.20) H(X, q, a, ξ) = F̃ (X, q, a, ξ, I, 0).

Note that by (3.15), and (3.20), we have

H(X, q, a, ξ) = F (X, q, a, ξ, I, 0);

that is, H is the function F obtained when using a geodesic coordinate system. Hence,
(3.19) can be written as

(3.21) F̃ (A′, p′, c, ξ, G,Γ
k
) = H(B′tA′B′, B′tp′, c, ξ),

and using (3.15), (3.20), we have formula (3.9). Note the role of B′ which makes
B′tA′B′ : (TξN , I) → (T ∗

ξ N , I) symmetric. In particular, if we take ψ as a geodesic
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coordinate system around ξ, and ψ to be a Euclidean diagonal rotation R with respect

to ψ (both are R-related) so that B′ = R, G = RtIR = I, and Γ
k
= 0 at the point ξ,

then (3.16) can be written as

(3.22) F̃ (A, p, c, ξ, I, 0) = F̃ (RtAR,Rtp, c, ξ, I, 0),

that is, as

(3.23) H(A′, p′, c, ξ) = H(RtA′R,Rtp′, c, ξ),

where A′ : (TξN , I) → (T ∗
ξ N , I) is any matrix in SMξ(N , I), p′ ∈ (T ∗

ξ N , I), and R is
any Euclidean diagonal rotation in (TξN , I).

Note that the general expression of rotation invariance is written in terms of F̃
in (3.16), (3.17).

Remark 7. Let us write the rotation invariance in the tangent plane in terms
of F . If we consider the quadratic form Q in the coordinate system ψ = (ψ1, ψ2) :
BTξN (0, r) → N given by

Q(v) =
1

2
(Sv, v) + (p, v) + c,

where S ∈ SMξ(N ), we consider the diagonal rotation R : TξN → TξN and define

Q̄(w) =
1

2
(SRv,Rv) + (p,Rv) + c = Q(Rw).

Consider the function C(ζ) = Q(ψ−1(ζ)). In the coordinate system ψ : BTξN (0, r) →
N given by ψ(v) = ψ(Rv), C(ζ) = Q̄(R−1ψ−1(ζ)) = Q̄(ψ

−1
(ζ)). That is, C is

expressed by Q̄ in the coordinate system ψ. Both expressions are R-related. Then by
the infinitesimal generator axiom

Tt(C,ψ)(ξ) − (C,ψ)(ξ)

t
→ F (S, p, ξ,G,Γk),

Tt(R(C,ψ))(ξ) −R(C,ψ)(ξ)

t
→ F (RtSR,Rtp, ξ,G, Γ̄k).

Thus

(3.24) F (S, p, ξ,G,Γk) = F (RtSR,Rtp, ξ,G, Γ̄k).

Notice that the metric does not change, but the connection does.
Remark 8. If BBt = G−1, then

(3.25) H(BtAB,Btp, c, ξ) = H(RtBtABR,RtBtp, c, ξ),

where A : (TξN , G) → (T ∗
ξ N , G) is any matrix in SMξ(N , G), p ∈ (T ∗

ξ N , G), and R is

any Euclidean diagonal rotation in (TξN , I). Note that BtAB : (TξN , I) → (T ∗
ξ N , I)

is any matrix in SMξ(N , I), and Btp ∈ (T ∗
ξ N , I). Note that BR : (TξN , I) →

(TξN , G) satisfies

〈BRv,BRw〉g1×g2 = 〈v, w〉I×I .

That is, it is an isometry matrix from (TξN , I) to (TξN , G).
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We can also write the rotation invariance of H in a different way. Start with
(writing A′ = GA− Γ(p))

(3.26) F̃ (A′, p, c, ξ, G,Γk) = F̃ (RtA′R,Rtp, c, ξ, G,Γ
k
)

for any diagonal rotation R in (TξN , G), and use (3.21) to obtain

(3.27) H(BtA′B,Btp, c, ξ) = H(BtRtA′RB,BtRtp, c, ξ).

Note that RB is a diagonal isometry from (TξN , I) to (TξN , G).
Let us comment on the implications of coordinate symmetry. Let

(3.28) S =

(
0 I
I 0

)
.

Let us assume that M1 = M2 = M (with different metrics). Let us consider the
axiom

[Axiom of symmetry of the two coordinates] If SC(ξ1, ξ2) = C(ξ2, ξ1), then

Tt(SC) = STt(C) ∀t ≥ 0, ∀C ∈ C∞
b (M×M).

Note that if the coordinate system around ξ that we use when we compute Tt(C) is
ψ = (ψ1, ψ2), then we use Sψ = (ψ2, ψ1) when we compute Tt(SC). We should write
then Tt(SC, Sψ) = STt(C,ψ). Perhaps we incur herein a slight abuse of notation.

SinceD2
NS(C)(ξ) = SD2

NC(Sξ)S, DNS(C)(ξ) = SD2
NC(Sξ), and, letting S[Γ

(1)⊗
Γ(2)]k(ξ) := S(Γ(1) ⊗ Γ(2))k(Sξ)S, we have

S[Γ(1) ⊗ Γ(2)]k(ξ) = (Γ(1) ⊗ Γ(2))k(Sξ),

we obtain the following lemma.
Lemma 3.7. Let Tt be a multiscale analysis satisfying the axioms, including all

architectural axioms, the comparison principle, the gray level Shift invariance, and
the symmetry of the two coordinates invariance. Then F satisfies

F (SAS, Sp, ξ, SG(ξ),Γk(Sξ)) = F (A, p, Sξ, SG(ξ),Γk(Sξ))

∀A ∈ S(N ), ∀p ∈ N \ {0}, ∀ξ ∈ N .

Note that the two last arguments are the same; the invariance is expressed in the
first three arguments.

4. The linear case. The proof of the next lemma is elementary and can be
found in [5] (particularly in Lemma 5.1).

Lemma 4.1. Let M be a Riemannian manifold. Let D be a matrix such that

RDRt = D

for all rotations R in (TηM, G(η)). Then D = λG(η)−1 for some λ ∈ R.
Theorem 4.2. Let Tt be a multiscale analysis on similarity functions satisfying

the axioms, including all architectural axioms, the comparison principle, and the gray
level shift invariance. Assume that Tt is linear. Then

Ct = F (D2
NC, ξ,G),
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where

F (X, ξ,G) = c11(ξ)Tr((G
1)−1(ξ1)X11) + 2c12(ξ,G)Tr(D̄12I

1(ξ1)
−1X12)

+c22(ξ)Tr((G
2)−1(ξ2)X22),

where D̄12 is an isometry from (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)). The ellipticity
of F implies that c11, c22 ≥ 0.

Moreover, we could add that

(4.1) 2c12(ξ,G)D̄12I
1(ξ1)

−1 = B2(ξ2)D
′B1(ξ1)

t,

and the dependence of c12(ξ,G)D̄12I
1(ξ1)

−1 on G is only in B2(ξ2) (isometry) and
B1(ξ1)

t (isometry). D′ is a matrix that depends only on ξ (see Remark 9 below). We
could also write the second term as 2c21(ξ,G)Tr(D̄21I

2(ξ2)
−1X21).

Note that the operators cii(ξ)Tr((G
i)−1(ξi)Xii) are multiples of the Laplace–

Beltrami operator. Notice also that there are no first order terms in these operators.
They cannot couple with vectors so that we have the required invariance induced by
the rotations of tangent planes.

Proof. Since Tt is gray level shift invariant, F̃ does not depend on c. On the other
hand, it does not depend on Γk. The linearity of Tt and Theorem 3.2 imply that in
terms of the function F̃

F̃ (rX1 + sX2, rp1 + sp2, ξ, G) = rF̃ (X1, p1, ξ, G) + sF̃ (X2, p2, ξ, G)

for any X1, X2 ∈ SMξ(N ), any p1, p2 ∈ T ∗
ξ N , and any r, s ∈ R. By taking X1 = X ,

X2 = 0, p1 = 0, p2 = p, r = 1, s = 1, we write

F̃ (X, p, ξ,G) = F̃ (X, 0, ξ, G) + F̃ (0, p, ξ, G) =: K ′(X, ξ,G) +K ′′(p, ξ,G),

where K ′ is linear in X and K ′′ is linear in p. Moreover, from the rotation invariance
of F̃ ,

F̃ (X, p, ξ,G) = F̃ (RtXR,Rtp, ξ,G) ∀ diagonal rotations R in (TξN , G(ξ))

(diagonal means R = (R1, R2) and R1, R2 are related), we deduce that

K ′(X, ξ,G) = K ′(RtXR, ξ,G),(4.2)

K ′′(p, ξ,G) = K ′′(Rtp, ξ,G).(4.3)

Let us write

X =

(
X11 X12

X21 X22

)
,

where X21 = Xt
12. We also write

R =

(
R1 0
0 R2

)
,

whereR1 : (Tξ1M1, G1(ξ1)) → (Tξ1M1, G1(ξ1)) andR2 : (Tξ2M2, G2(ξ2)) → (Tξ1M2, G2(ξ2)),
with R2P (ξ) = P (ξ)R1. Then

RtXR =

(
Rt

1X11R1 Rt
1X12R2

Rt
2X21R1 Rt

2X22R2

)
.
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Since K ′ is linear in X , we have

K ′(X, ξ,G) = K ′
11(X11, ξ, G) +K ′

12(X12, ξ, G) +K ′
21(X21, ξ, G) +K ′

22(X22, ξ, G),

where each K ′
ij(Xij , ξ, G) is linear in Xij and by (4.2) we have

K ′
11(R

t
1X11R1, ξ, G) = K ′

11(X11, ξ, G),

K ′
12(R

t
1X12R2, ξ, G) +K ′

21(R
t
2X21R1, ξ, G) = K ′

12(X12, ξ, G) +K ′
21(X21, ξ, G),

(4.4)

K ′
22(R

t
2X22R2, ξ, G) = K ′

22(X22, ξ, G).

At ξ fixed, and for ij = 11, 22, K ′
ij(Xij , ξ, G) is a symmetric linear function of the

eigenvalues ofXij . Then there exists a matrixDii : (TξiMi, Gi(ξi)) → (TξiMi, Gi(ξi))
(depending on ξ,G) such that

K ′
ij(Xij , ξ, G) = Trace(DijXij).

From the rotation invariance

Trace(DijXij) = Trace(DijR
t
iXijRj) = Trace(RjDijR

t
iXij).

Since this is true for all Xij , then RjDijR
t
i = Dij . By Lemma 4.1 we have that

Dij = cij(ξ,G)(G
i)−1(ξi) for some constant cij(ξ,G).

Now, K ′
12(X12, ξ, G) +K ′

21(X21, ξ, G) is a linear function of X12. Thus there is a
matrix D′

ij such that

K ′
12(X12, ξ, G) +K ′

21(X21, ξ, G) = Trace(D′
12X12).

Since the map has to be an endomorphism,D′
12X12 has to be a map (Tξ2M2, G2(ξ2)) →

(Tξ2M2, G2(ξ2)). Since X12 : (Tξ2M2, G2(ξ2)) → (Tξ1M1, G1(ξ1))
∗, we write the

map D′
12 = D12I(ξ1)

−1, where I(ξ1) : (Tξ1M1, G1(ξ1)) → (Tξ1M1, G1(ξ1))
∗ and

D12 : (Tξ1M1, G(ξ1)
1) → (Tξ2M2, G2(ξ2)). Using the rotation invariance (4.4), we

have

(4.5)
Trace(D12I

1(ξ1)
−1X12) = Trace(D12I

1(ξ1)
−1Rt

1X12R2)
= Trace(R2D12I

1(ξ1)
−1Rt

1X12).

Note that all maps inside the traces map (Tξ2M2, G2(ξ2)) → (Tξ2M2, G2(ξ2)). This
implies that

D12I(ξ1)
−1 = R2D12I(ξ1)

−1Rt
1,

that is,

D12 = R2D12I
1(ξ1)

−1Rt
1I

1(ξ1),

as maps from (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)). Let us observe that I
1(ξ1)

−1Rt
1I

1(ξ1) :

(Tξ1M1, G1(ξ1)) → (Tξ1M1, G1(ξ1)) is an isometry and denote it by R
t

1 = I1(ξ1)
−1Rt

1I
1(ξ1).

We can write

(4.6) D12R
−t

1 = R2D12.
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Let us interpret R2 as a representation of the isometry group of (Tξ2M2, G2(ξ2)),

and R
−t

1 is a representation of the isometry group of (Tξ1M1, G1(ξ1)). Denote them
by ρ(R) and ρ(R), respectively (R represents a rotation). Note the slight abuse of
notation writing R in both cases, but note that R1 is determined by R2, since both
are P (ξ)-related. Then ρ(I) = I and ρ(I) = I. Note also that I = ρ(RR−1) =
ρ(R)ρ(R−1); thus ρ(R−1) = ρ(R)t (they are isometries). The same is true for ρ(R).
We rewrite (4.6) as

(4.7) D12ρ(R) = ρ(R)D12 ∀R.

By transposing we have

(4.8) ρ(R)tDt
12 = Dt

12ρ(R)t ∀R.

After multiplying by D12,

(4.9) D12ρ(R)tDt
12 = D12D

t
12ρ(R)t ∀R.

Writing (4.7) withR−1 instead ofR and using that ρ(R−1) = ρ(R)t, ρ(R−1) = ρ(R)t,
we have

(4.10) D12ρ(R)t = ρ(R)tD12 ∀R.

Combining (4.10) with (4.9), we have

(4.11) ρ(R)tD12D
t
12 = D12D

t
12ρ(R)t ∀R.

Then, by Schur’s lemma [19], there is a constant c ∈ R such that D12D
t
12 = cI. Thus,

either D12 = 0 or 1√
c
D12 is an isometry in (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)). Note

that this cannot be improved since, reading this backward, we have that (4.4) holds.
Let us note the constant c as 2c12(ξ,G).

We have proved that

(4.12) K ′
12(X12, ξ, G) +K ′

21(X21, ξ, G) = 2c12(ξ,G)Trace(D̄12I
1(ξ1)

−1X12),

where D̄12 : (Tξ1M1, G1(ξ1)) → (Tξ2M2, G2(ξ2)) is an isometry.
Since for i = 1, 2, we can write

K ′
ii(Xii, ξ, G) = cii(ξ,G)Trace((G

i)−1(ξi)Xii) = cii(ξ,G)Trace(B
i(ξi)(B

i)t(ξi)Xii)

= cii(ξ,G)Trace((B
i)t(ξi)XiiB

i(ξi)) = Hii(B
i(ξi)

tXiiB
i(ξi), 0, ξ),

where Hii is linear in its first argument (see (3.21)), we deduce that cii(ξ,G) does not
depend on G. The ellipticity of F̃ proves that cii(ξ) ≥ 0, i = 1, 2.

Let us prove that K ′′(p, ξ,G) = 0. Now, by (4.3) we have

K ′′(p, ξ,G) = K ′′(Rtp, ξ,G)

for all diagonal rotations as above. Let p = (p1, p2). Then we may write

K ′′(p, ξ,G) = K ′′
1 (p1, ξ, G) +K ′′

2 (p2, ξ, G),

where K ′′
i is linear in pi (ξ,G fixed). Thus, letting p1 = 0 and p2 = 0, respectively,

we deduce

K ′′
i (pi, ξ, G) = K ′′

i (R
t
ipi, ξ, G)
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for i = 1, 2. Thus K ′′
i does not depend on pi but depends only on its modulus; that

is,

K ′′
i (pi, ξ, G) = K̄ ′′

i (|pi|(gi)−1 , ξ, G)

for some function K̄ ′′
i .

Let us compute the modulus. Observe that

〈Rt
ipi, R

t
ip

′
i〉 = ((Gi)−1(ξi)R

t
ipi, R

t
ip

′
i) = (Ri(G

i)−1(ξi)R
t
ipi, p

′
i).

From Rt
iG

i(ξi)Ri = Gi(ξi), we have Ri(G
i)−1(ξi)R

t
i = (Gi)−1(ξi). Thus

(Ri(G
i)−1(ξi)R

t
ipi, p

′
i) = ((Gi)−1(ξi)pi, p

′
i) = 〈pi, p′i〉.

Thus |Rt
ipi|(gi)−1(ξi) = |pi|(gi)−1(ξi) for any covector pi. Then

2K̄ ′′
i (|pi|(gi)−1(ξi), ξ, G) = K ′′

i (pi, ξ, G) +K ′′
i (−p, ξ,G) = K ′′

i (0, ξ, G) = 0.

Our claim is proved.
Remark 9. In the context of the above proof, let us analyze the dependence of

2c12(ξ,G)D̄12I
1(ξ1)

−1 on G(ξ). From

K ′
12(X12, ξ, G) = H12(B

1(ξ1)
tX12B

2(ξ2), 0, ξ),

where H12 is linear in its first argument (see (3.21)), we have

2c12(ξ,G)Trace(D̄12I
1(ξ1)

−1X12) = Trace(D′B1(ξ1)
tX12B

2(ξ2)),

where D′ : (Tξ1M1, G
1
(ξ1))

∗ → (Tξ2M2, G
2
(ξ2)) depends only on ξ, and Bi(ξi) =

B
GiG

i(ξi) : (TξiMi, G
i
(ξi)) → (TξiMi, Gi(ξi)), X12 : (Tξ2M2, G

2
(ξ2)) → (Tξ1M1, G

1
(ξ1))

∗.
Let us write

D̄12I
1(ξ1)

−1 = B2(ξ2)D̄
′
12B

1(ξ1)
t.

Then

Trace(D′B1(ξ1)
tX12B

2(ξ2)) = 2c12(ξ,G)Trace(B
2(ξ2)D̄

′
12B

1(ξ1)
tX12)

= 2c12(ξ,G)Trace(D̄
′
12B

1(ξ1)
tX12B

2(ξ2)).

Thus

2c12(ξ,G)D̄
′
12 = D′.

Multiplying by B2(ξ2) to the left and by B1(ξ1)
t to the right, we have

2c12(ξ,G)D̄12I
1(ξ1)

−1 = B2(ξ2)D
′B1(ξ1)

t.

The dependence of c12(ξ,G)D̄12I
1(ξ1)

−1 onG is only in B2(ξ2) (isometry) and B1(ξ1)
t

(isometry).
If, in addition to the assumptions of Theorem 4.2, we assume that Tt satisfies the

axiom of symmetry of the two coordinates, we have c11(Sξ) = c22(ξ). Concerning the
second term, we exploit the expression (4.1), and the axiom of of symmetry of the
two coordinates implies that

Trace(B2(ξ2)D
′(ξ)B1(ξ1)

tX12) = Trace(B1(ξ1)D
′(Sξ)B2(ξ2)

tX21)



MULTISCALE ANALYSIS OF SIMILARITIES 21

for all X12. By transposing in the last expression we can continue the equalities

= Trace(X12B
2(ξ2)D

′(Sξ)tB1(ξ1)
t) = Trace(B2(ξ2)D

′(Sξ)tB1(ξ1)
tX12).

Since this holds for any X12, we have that

B2(ξ2)D
′(ξ)B1(ξ1)

t = B2(ξ2)D
′(Sξ)tB1(ξ1)

t.

This implies that

D′(Sξ) = D′(ξ)t.

4.1. The case of (Mr, gr(x)) = (RN , gr(x)). To fix ideas we considerM1 =
M2 = M = R

N and grij(x) to be general metrics in R
N , r = 1, 2. We know that ei =

Gr(x)−1/2fi is an orthonormal basis of (TxMr, gr(x)) if fi is a Euclidean orthonormal
basis. Let Ir(x) : (RN , gr(x)) → (RN , (gr)−1(x)) be given by Ir(x)ei = e∗i . Then

Ir(x) = Gr(x).

If Br(x) satisfies Br(x)Ir(x)−1Br(x)t = Gr(x)−1, then we can take Br(x) = I.
We can define P (x, y)(v) = G2(y)−1/2G1(x)1/2v, v ∈ R

N , as the a priori con-
nection of x and y. Then |P (x, y)v|g2 = |v|g1 for all (x, y) ∈ R

2N . Recall that
D̄1,2 : (RN , g1(x)) → (RN , g2(y)) is an isometry, in this case given by D̄1,2 =
G2(y)−1/2G1(x)1/2. Then (4.1) is

2c12(x, y)D̄1,2I
1(x)−1 = 2c12(x, y)G

2(y)−1/2G1(x)−1/2.

The PDE obtained is

(4.13) Ct = a(x, y)ΔMxC+2c12(x, y)Tr(G
2(y)−1/2G1(x)−1/2DxyC)+c(x, y)ΔMyC,

where

ΔMxC = Tr(G1(x)−1(Dxxu(x)− Γ(1)(Du)(x))).

The same is true for the operator ΔMy.
Remark 10. Note that (first by transposition and then by reordering) we have

Tr(G2(y)−1/2G1(x)−1/2DxyC) = Tr(DyxCG
1(x)−1/2G2(y)−1/2)

= Tr(G1(x)−1/2G2(y)−1/2DyxC),

which is a symmetric expression in (x, y). If Tt is symmetric in (x, y), then c12 is also
symmetric.

In the symmetric case, the matrix associated to the operator (4.13) is(
a(x, y)G1(x)−1 c12(x, y)G

2(y)−1/2G1(x)−1/2

c12(x, y)G
1(x)−1/2G2(y)−1/2 c(x, y)G2(y)−1

)
.

It is positive semidefinite if and only if a, c ≥ 0 and ac− c212 ≥ 0.
Remark 11. This will permit us to also construct an operator in the case of video.

In that case, N = 3 and M = {(t, x) : t ∈ R, x ∈ R
2}. Let us consider the metric

g(t, x)ij so that if (s, y) denote the coordinates in T(t,x)M,

(4.14) g(x, t)ijdxidxj = A(t, x)(y − v(x, t)s)2 +B(t, x)s2.

As an example, we can take A(t, x) = α+ |∇xI|2, B(t, x) = β + (∂vI)
2, α, β > 0.
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4.2. The case of conformal metrics in R
N . To fix ideas take M1 = M2 =

M = R
N and grij(x) = λr(x)2δij , λ

r(x) > 0 for x ∈ R. We can also considerM = T
N ,

where T represents the circle, assuming that we can deploy functions on T to R
N by

parity and periodic extension. In that case, λr(x) is similarly extended. Note the
connection

Γ
(r)k
ij (x) =

∂

∂xi
ln λr δjk +

∂

∂xj
ln λr δik −

∂

∂xk
ln λr δij .

We also have for u(x)

D2
Mxu(x) = Dxxu(x)− Γ(r)(Du)(x),

where

Γ(r)(Du) := (Γ
(r)k
ij (x))ij(·k)Du(x) = Du⊗D ln λr +D ln λr ⊗Du−D ln λr ·DuI,

where we have denoted by (·k) the contraction (like scalar product) in the variable k
with the coordinates of Du. Thus

Tr(Γ(r)(Du)) = −(N − 2)D ln λr ·Du.

Note that ei = 1
λr(x)fi is an orthonormal basis of (RN , λr(x)), when fi is a Eu-

clidean orthonormal basis of RN . Then e∗i = λr(x)fi is the dual basis. Then the
operator Ir(x) : (RN , gr(x)) → (RN , (gr)−1(x)) such that Ir(x)ei = e∗i is given by
Ir(x) = λr(x)2I. If Br(x) satisfies Br(x)Ir(x)−1Br(x)t = Gr(x)−1, then we may
take Br(x) = I.

We define P (x, y)(v) = λ1(x)
λ2(y)v, v ∈ R

N , as the a priori connection of x and y.

Then |P (x, y)v|g2 = |v|g1 for all (x, y) ∈ R
2N .

Note that

Trg1(D2
Mxxu(x)) = Tr((G1)(x)−1D2

Mxxu(x)) =
1

λ1(x)2
Tr(Dxxu(x)− Γ(1)(Du)(x))

=
1

λ1(x)2
(Δu(x) + (N − 2)D ln λ1 ·Du) = 1

(λ1)(x)N
div

(
(λ1)(x)N−2Du(x)

)
=

1√
det(g1(x))

div
(√

det(g1(x))(g1)(x)−1Du(x)
)
= ΔMxu(x),

which is the Laplace–Beltrami operator.
Let us write (4.1) as

2c12(x, y)D̄1,2I
1(x)−1 = B2(y)D′(x, y)B1(x),

where D̄1,2 : (RN , (λ1)(x)2I) → (RN , (λ2)(y)2I) is an isometry, in this case given by

D̄1,2 = λ1(x)
λ2(y) I. Then we have

2c12(x, y)
λ1(x)

λ2(y)

1

(λ1)(x)2
I = D′(x, y).

That is,

D′(x, y) = 2
c12(x, y)

λ1(x)λ2(y)
I.
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Thus, the linear operator on C(t, x, y) can be written as

(4.15)
Ct =

a(x,y)
(λ1)(x)2 (ΔxC + (N − 2)Dx ln λ

1(x) ·DxC) + 2 c12(x,y)
λ1(x)λ2(y)Tr(DxyC)

+ c(x,y)
(λ2)(y)2 (ΔyC(y) + (N − 2)Dy ln λ

2(y) ·DyC)

or

(4.16) Ct = a(x, y)ΔMxC + 2
c12(x, y)

λ1(x)λ2(y)
Tr(DxyC) + c(x, y)ΔMyC

for functions a(x, y), c12(x, y), c(x, y) so that the operator is elliptic (that is, if and
only if a|v1|2 + 2c12 < v1, v2 > +c|v2|2 ≥ 0 for all v1, v2). This is the case if and
only if a, c ≥ 0 and ac − c212 ≥ 0. Indeed, if the operator is elliptic, then by writing
v1 = αe, v2 = βe we get aα2 + 2c12αβ + cβ2 ≥ 0 for all α, β; thus ac − c212 ≥ 0. If
ac− c212 ≥ 0, then a|v1|2+2c12 < v1, v2 > +c|v2|2 ≥ a|v1|2−2|c12||v1||v2|+ c|v2|2 ≥ 0.
If Tt is symmetric in (x, y), then c12 is also symmetric.

If N = 1, we simply have

Γr(x) =
(λr)′(x)
λr(x)

= (ln λr(x))′,

and (4.16) is
(4.17)

Ct =
a

λ1(x)2
(Cxx−(ln λ1(x))′Cx)+2

c12(x, y)

λ1(x)λ2(y)
Cxy+

c(x, y)

(λ2(y))2
(Cyy−(ln λ2(y))′Cy).

4.3. The case where (Mr, g) = (RN , I). Let us start by considering a gen-
eral metric g in R

N , and P (ξ)(v) = v for all v ∈ R
N . Then (2.7) is saying that the

metric g is constant and P (ξ) is also the identity. If P (ξ)(v) is any a priori connection
map, we have the result stated in Theorem 4.2.

Let us consider the case (Mr, g) = (RN , I). We denote ξ = (x, y) ∈ R
N × R

N .
We do not subsume this under the general manifold case, because we can assume a
different set of invariances that permits the operator to have first order terms. Let us
consider translation and rotation invariance.

[Translation invariance] Tt(τa,bC) = τa,bTtC ∀t ≥ 0, ∀C ∈ C∞
b (RN×R

N), ∀a, b ∈ R
N ,

where τa,bC(x, y) = C(x+ a, y + b).

[Rotation invariance] Tt(RC) = RTtC ∀t ≥ 0, ∀C ∈ C∞
b (RN × R

N ), ∀R ∈ O(N),

where RC(x, y) = C(Rx,Ry). We have denoted by O(N) the rotations in R
N .

Theorem 4.3. Let Tt be a multiscale analysis in (RN , I) satisfying the axioms,
including all architectural axioms, the comparison principle, the gray level shift in-
variance, and rotation invariance. Assume that Tt is linear. Then

(4.18) Ct = F (D2C,DC, z),

where

F (A, v, z) =

2∑
i,j=1

cij(z)TrAij + 〈b(z), p〉
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for some functions cij(z) ∈ R, b(z) ∈ R2N , i, j = 1, 2, such that cij(R ◦ z) = cij(z),
b(R ◦ z) = R ◦ b(z) for all R ∈ O(N) and all z ∈ R

2N . The ellipticity of F implies
that (cij(z)) is a positive definite matrix for all z ∈ R

2N .
Moreover, if we assume that Tt is translation invariant, then

F (A, v, z) =

2∑
i,j=1

cijTrAij ,

where cij are constants.
Note the difference between this and the statement of Theorem 4.2; the difference

is due to the assumption of rotation invariance that involves the action of the rotation
on (x, y).

Thus the PDE is

Ct = c11(z)ΔxC + 2c12(z)Tr(D
2
xyC) + c22(z)ΔyC(4.19)

+ 〈b1(z), DxC〉+ 〈b2(z), DyC〉.

An example is

(4.20) Ct = ΔxC + 2Tr(D2
xyC) + ΔyC.

Let C(t, x, y) =
∫
RN gt(z)C(0, x + h, y + h) dh, where gt is the Gaussian of scale t.

Then C(t, x, y) is a solution of (4.20) with initial condition C(0, x, y). If C(0, x, y) =
I(x)J(y), then C(t, x, y) :=

∫
RN gt(z)I(x+h)J(y+h) dh. If C(0, x, y) = (I(x)−J(y))2,

then C(t, x, y) :=
∫
RN gt(z)(I(x+h)−J(y+h))2 dh. Another example is C(0, x, y) =∑N

i=1 Zi(x)Zi(y), where Z(x) = (Zi(x))
N
i=1 is the direction of the gradient of I.

Proof. Observe that if L ∈ GL(N) and CL(x, y) = C(Lx,Ly), then

DCL(x, y) =

(
LtDxC(Lx,Ly)
LtDyC(Lx,Ly)

)
,

D2CL(x, y) =

(
LtDxxC(Lx,Ly)L LtDxyC(Lx,Ly)L
LtDyxC(Lx,Ly)L LtDyyC(Lx,Ly)L

)
.

To simplify the notation we write DCL(x, y) = Lt ◦ DC(Lx,Ly) and D2CL(x, y) =
Lt ◦D2C(Lx,Ly) ◦ L.

Let z = (x, y). By the axioms above, F = F (A, p, z). As above, from the linearity
of Tt we can write

F (A, p, z) =: F ′(A, z) + F ′′(p, z),

where F ′ is linear in A and F ′′ is linear in p. Moreover, if we assume that Tt is
translation invariant, then F ′, F ′′ do not depend on z.

Then the rotation invariance axiom implies that

F (Rt ◦A ◦R,Rt ◦ p, z) = F (A, p,R ◦ z)

for all R ∈ O(N), A ∈ S(2N) p ∈ R
2N , x, y ∈ R

N . Thus

F ′(Rt ◦A ◦R,Rt ◦ z) + F ′′(Rt ◦ p,Rt ◦ z) = F ′(A, z) + F ′′(p, z).
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Now, since F ′ and F ′′ are linear in their first arguments, we have F ′(0, z) = 0,
F ′′(0, z) = 0. Thus

F ′(Rt ◦A ◦R,Rt ◦ z) = F ′(A, z),(4.21)

F ′′(Rt ◦ p,Rt ◦ z) = F ′′(p, z)(4.22)

for all values of their arguments. Let us write

A =

(
A11 A12

A21 A22

)
,

where A21 = A12. By linearity of F ′ in its first argument we have

F ′(A, z) = F ′
11(A11, z) + 2F ′

12(A12, z) + F ′
22(A22, z),

where each F ′
ij(Aij , z) is linear in Aij and F ′

ij(R
tAijR,R

tz) = F ′
ij(Aij , z). At z fixed,

F ′
ij(Aij , z) is a symmetric linear function of the eigenvalues of Aij , that is, a linear

function of Tr(Aij). That is, there exists cij(z) such that

F ′
ij(Aij , z) = cij(z)Tr(Aij).

Moreover, cij(R
t ◦ z) = cij(z).

Similarly, for z fixed, F ′′(p, z) is a linear function of p; that is, there are some
coefficients b(z) = (b1(z), b2(z)) ∈ R

2N such that F ′′(p, z) = 〈b(z), p〉. By (4.22) we
have

〈b(R ◦ z), R ◦ p〉 = 〈b(z), p〉 ∀p ∈ R
2N , ∀R ∈ O(N)

and

(4.23) 〈bi(R ◦ z), Rpi〉 = 〈bi(z), pi〉 ∀pi ∈ R
N , ∀R ∈ O(N), ∀i = 1, 2.

This implies that

(4.24) Rtbi(R ◦ z) = bi(z) ∀R ∈ O(N), ∀i = 1, 2.

If we assume that Tt is translation invariant, then cij(z) = cij are constants and
b(z) does not depend on z. Then, from (4.24) we deduce that b(z) = 0. Then

F (A, p, z) =

2∑
i,j=1

cijTrAij .

Remark 12. Let us give some examples of functions b(z). We can take L1, L2 so
that Li(R ◦ z) = Li(z) for all R ∈ Oz(N). Then

b(z) =

(
L1(z)x
L2(z)y

)

and

b(z) =

(
L1(z)(x− y)
L2(z)(x− y)

)
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satisfy (4.24).
If, in addtion to the assumptions of Theorem 4.3, we assume that Tt satisfies the

axiom of symmetry of the two coordinates, we have c11(Sz) = c22(z), c12(Sz) = c12(z)
and b1(Sz) = b2(z) for all z ∈ R

2N .
If we assume that Tt satisfies the scale invariance axiom,

[Scale invariance] For any λ > 0 and t ≥ 0 there exists t′ ≥ 0 such that

Tt(DλC) = DλTt′C ∀C ∈ C∞
b (RN × R

N ), where DλC(x, y) = C(λx, λy),

and t → Tt is one-to-one, then using the arguments in [1, section 6, Lemma 1] or in
[16, Chapter 20, Lemma 20.20], after a suitable time rescaling we have

F (λ2A, λp, z) = λ2F (A, p, λz).

Then

λ2 (c11(z)Tr(A11) + 2c12(z)Tr(A12) + c22(z)Tr(A22)) + λ〈b(z), p〉
= λ2 (c11(λz)Tr(A11) + 2c12(λz)Tr(A12) + c22(λz)Tr(A22)) + λ2〈b(λz), p〉.

We obtain cij(λz) = cij(z) and λb(λz) = b(z). We obtain that cij(z) = cij are
constants and b(z) is homogeneous of degree −1.

An example is given by

(4.25)

Ct = c11ΔxC + 2c12Tr(D
2
xyC) + c22ΔyC

+
κ1

|x− y|2 〈DxC, x − y〉+ κ2
|x− y|2 〈DyC, x− y〉,

where cij , κi are constants. The ellipticity of F implies that (cij) is a positive definite
matrix. If c11 = c22 and κ2 = −κ1, then we also satisfy the axiom of symmetry with
respect to the change of order of coordinates.

Remark 13. As in the computations done before the proof of Theorem 4.3, let
A,B be two N ×N matrices, C(t, x, y) =

∫
RN gt(z)C(0, x+Ah, y+Bh) dh, where gt

is the Gaussian of scale t, and C(0, x, y) = (I(x) − J(y))2. Then C(t, x, y) satisfies
the equation

(4.26) Ct = Trace(AtAD2
xC) + 2Trace(ABtDxyC) + Trace(BtBD2

yC).

Note that this equation corresponds to the models described in Theorem 4.2, and
in particular to (1.3), when the metrics are constant in both images. This will be
exploited as a numerical approximation in [10], where the construction of the metrics,
which is a relevant issue, will be discussed in detail. A preliminary result illustrating
the comparison measure is shown in section 6.

5. The morphological axiom. In this section we assume that Tt is a multiscale
analysis satisfying the axioms, including all architectural axioms, the comparison
principle, and the gray level shift invariance.

Let us recall the following axiom:

[Gray scale invariance] Tt(f(C)) = f(Tt(C)) ∀t ≥ 0, ∀C ∈ C∞
b (M1 ×M2),

and for any strictly increasing function f : R → R.
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It is also called the morphological axiom.
The next lemma can be proved as in [1, 5] (see section 5.1 and Lemma 4.1,

respectively).
Lemma 5.1. Assume that Tt satisfies all architectural axioms, the comparison

principle, and the morphological axiom.

(5.1)
F (λA+ μp⊗ p, λp, ξ,G,Γk) = λF (A, p, ξ,G,Γk)

∀A ∈ SMξ(N ), ∀p ∈ T ∗
ξ N , ∀ξ ∈ N , ∀λ ≥ 0, μ ∈ R.

Let Qp = I − p⊗G−1p
(G−1p,p) , p ∈ T ∗

ξ N \ {0}. Then Qp : TξN → TξN and Qt
p : T ∗

ξ N →
T ∗
ξ N . As in [1, 5] (see section 5.1 and Theorem 4.2, respectively), we prove the

following theorem.
Theorem 5.2. Let Tt be a multiscale analysis satisfying the axioms, including all

architectural axioms, the comparison principle, and the morphological axiom. Then

(5.2)
F (A, p, ξ,G,Γk) = F (Qt

pAQp, p, ξ, G,Γ
k)

∀A ∈ SMξ(N ), ∀p ∈ T ∗
ξ N \ {0}, ∀ξ ∈ N .

A similar statement holds for F̃ . Let B be such that BtGB = I. In terms of H we
have

(5.3)
H(Bt(A− Γ(p))B,Btp, ξ) = H(BtQt

p(A− Γ(p))QpB,B
tp, ξ)

∀A ∈ SMξ(N ), ∀p ∈ T ∗
ξ N \ {0}, ∀ξ ∈ N .

By combining the computed invariances (including that with respect to diagonal
rotations) we note the following lemma.

Lemma 5.3. We denote here by R a diagonal rotation in the sense given above.
For F we have

(5.4)
F (S, p, ξ,G,Γk) = F (RtQt

pSQpR,R
tp, ξ,G, Γ̄k)

∀S ∈ SMξ(N ), ∀p ∈ T ∗
ξ N \ {0}, ∀ξ ∈ N .

For H we have

(5.5) H(Bt(S − Γ(p))B,Btp, ξ) = H(BtRtQt
p(S − Γ(p))QpRB,B

tRtp, ξ).

At this point we do not make precise the structure of the morphologically invariant
operators, since we cannot simultaneously use the same rotation with respect to both
ξ1 and ξ2 to extract curvatures as in [1, 5]. In section 5.1 below we give some explicit
examples.

5.1. Examples. We use the notation a⊗b(x) = (a, x)b, a ∈ T ∗
ξ N , b, x ∈ TξN (or

when the vectors are in any of the manifolds Mi). We also define [a⊗ b](x) = 〈a, x〉b,
a, b, x ∈ TξN , so that [a⊗ b] = Ga⊗ b.

We have defined Qp = I − [ep ⊗ ep] = I − p⊗G−1p
(G−1p,p) , where ep = G−1p

|G−1p|g . Then

Qp : TξN → TξN and Qt
p : T ∗

ξ N → T ∗
ξ N . Recall that we have GQt,g

p = Qt
pG.

Regarding the eigenvalues of a matrix, the matrix acts in the same linear space. Thus
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we speak about the eigenvalues of G−1Qt
pAQp = G−1Qt

pGG
−1AQp = Qt,g

p G−1AQp,
where A : TξN → T ∗

ξ N .

Note that Qpep = 0 and Qpe = e for any e ∈ 〈ep〉⊥. Let λ1, . . . , λN−1 and 0 be
the N real eigenvalues of G−1Qt

pAQp. Note that if N = 2,

Traceg(Q
t
pAQp) = Trace(G−1Qt

pAQp) =

2∑
i=1

〈Qt,g
p G−1AQpei, ei〉

= λ1 = 〈G−1AQpe
⊥
p , Qpe

⊥
p 〉 = 〈G−1Ae⊥p , e

⊥
p 〉.

We denote

curvg(C) =
Traceg(Q

t
pAQp)

|G−1p|g
=

λ1
|G−1p|g

.

An example is given by functions

F (A, p, ξ) = Q(Trg(Q
t
pAQp), p, ξ) ∀A ∈ SMξ(N ), ∀p ∈ (TξN ∗, ∀ξ ∈ N ,

where Q is a nondecreasing function of its first argument. Notice that by taking μ = 0
in (5.1), we have

Q(λr, λp, ξ) = λQ(r, p, ξ) ∀λ, r ≥ 0, ∀p ∈ (TξN )∗, ∀ξ ∈ N .

Thus, we can write

(5.6) Q(Trg(Q
t
pAQp), p, ξ) = |G−1p|gQ

(
curvg(C),

p

|G−1p|g
, ξ

)
.

We can take, in particular,

Ct = |∇C|gcurvg(C),

where ∇C = G−1DC. Other examples are

Ct = |∇C|gcurvg(C) + α
〈P (ξ)∇ξ1C,∇ξ2C〉

|∇C|g
for α ∈ R.

Let us specify the operator Trg(Q
t
pAQp). Let A ∈ SMξ(N ) (A21 = At

12),

A =

(
A11 A12

A21 A22

)
, p =

(
p1
p2

)
,

Q̄pi = I − pi ⊗ (Gi)−1(ξi)pi
(G−1(ξ)p, p)

.

Then

Qp =

(
Q̄p1 − p2⊗(G1)−1(ξ1)p1

(G−1(ξ)p,p)

− p1⊗(G2)−1(ξ2)p2

(G−1(ξ)p,p) Q̄p2

)
.

We have

Qt
pAQp =

(
M11 M12

M21 M22

)
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with M t
12 = M21. For simplicity of notation let us write G−1

i = (Gi)−1(ξi), |p|2 :=
(G−1(ξ)p, p) = |G−1p|2g,

M11 = Q̄t
p1
A11Q̄p1 −

G−1
2 p2 ⊗ p1
|p|2 A21Q̄p1 − Q̄t

p1
A12

p1 ⊗G−1
2 p2

|p|2

+
G−1

2 p2 ⊗ p1
|p|2 A22

p1 ⊗G−1
2 p2

|p|2 ,

M12 = −Q̄t
p1
A11

p2 ⊗G−1
1 p1

|p|2 +
G−1

2 p2 ⊗ p1
|p|2 A21

p2 ⊗G−1
1 p1

|p|2 + Q̄t
p1
A12Q̄p2

−G
−1
2 p2 ⊗ p1
|p|2 A22Q̄p2 ,

M21 = −G
−1
1 p1 ⊗ p2
|p|2 A11Q̄p1 + Q̄t

p2
A21Q̄p1 +

G−1
1 p1 ⊗ p2
|p|2 A12

p1 ⊗G−1
2 p2

|p|2

− Q̄t
p2
A22

p1 ⊗G−1
2 p2

|p|2 ,

M22 =
G−1

1 p1 ⊗ p2
|p|2 A11

p2 ⊗G−1
1 p1

|p|2 − Q̄t
p2
A21

p2 ⊗G−1
1 p1

|p|2 − G−1
1 p1 ⊗ p2
|p|2 A12Q̄p2

+ Q̄t
p2
A22Q̄p2 .

Observe that

StQt
pAQpS =

(
M22 M21

M12 M11

)
.

Thus, in the case of symmetry in x, y, the function F is symmetric by interchanging
M11 with M22 and M12 with M21.

Recall that in the PDE context

A = D2
NC =

(
DM,xxC DM,xyC
DM,yxC DM,yyC

)
, v = DNC =

(
DM,xC
DM,yC

)
.

Example 1. The first example is Trg(Q
t
pAQp) = Trg(M11) + Trg(M22). Write

Gi = gi = G(ξi). The traces are

Trg1(M11) = Trg1(Q̄
t
p1
A11Q̄p1)−

2

|p|2 (A21G
−1
1 p1, G

−1
2 p2)

+
2

|p|4 (p1, G
−1
1 p1)(A21G

−1
1 p1, G

−1
2 p2) +

(G−1
1 p1, p1)

|p|4 (A22G
−1
2 p2, G

−1
2 p2),

Trg2(M22) = Trg2(Q̄
t
p2
A22Q̄p2)−

2

|p|2 (A12G
−1
2 p2, G

−1
1 p1)

+
2

|p|4 (p2, G
−1
2 p2)(A12G

−1
2 p2, G

−1
1 p1) +

(G−1
2 p2, p2)

|p|4 (A11G
−1
1 p1, G

−1
1 p1).

This operator satisfies all axioms, including rotation invariance. In the conformal
case, the expressions can be somewhat friendly.

Example 2. We can consider all functions Q(Trg1(M11),Trg2(M22)) which are
homogeneous of degree 1 and monotone increasing and symmetric in the two variables.
Examples of Q are Q(a, b) = a+ b and Q(a, b) =

√
a+b+.

Example 3. We can consider all functions Q(Trg1(M11),Trg2(M22), p) which are
homogeneous of degree 1 (see (5.6)) in all variables and monotone increasing and
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symmetric in the first two variables. We can write

|p|Q
(

1

|p|Trg1(M11),
1

|p|Trg2(M22),
p

|p|

)
.

If it does not depend on the last variable

|p|Q
(

1

|p|Trg1(M11),
1

|p|Trg2(M22)

)
= Q(Trg1(M11),Trg2(M22)),

we recover Example 2. But we also have

|p|Q
(

1

|p|Trg1(M11),
1

|p|Trg2(M22)

)
+ α

〈P (ξ)G−1
1 p1, G

−1
2 p2〉

|p|

= Q(Trg1(M11),Trg2(M22)) + α
〈P (ξ)G−1

1 p1, G
−1
2 p2〉

|p| ,

where α ∈ R. Q is homogeneous of degree 1 and monotone increasing and symmetric
in the two variables. Examples of Q are Q(a, b) = a+ b and Q(a, b) =

√
a+b+.

Example 4. A more interesting example is

Tg(Qt
pAQp) := Trg1(M11) + Trg1,P (M12) + Trg2,P (M21) + Trg2(M22),

where

Trg1,P (M12) = Tr(P (ξ1, ξ2)G
−1
1 M12),

Trg2,P (M21) = Tr(P (ξ2.ξ1)G
−1
2 M21).

Note that the operators G−1
1 M12 and G−1

2 M21 are not endomorphisms. Thus, we
need the operators P (ξ1, ξ2) and P (ξ2, ξ1). Thus, these are mixed traces.

The remaining trace is then

Trg1,P (M12) = − 1

|p|2 (P (ξ)G
−1
1 A11G

−1
1 p1, p2) +

1

|p|4 (P (ξ)G
−1
1 p1, p2)(A11G

−1
1 p1, G

−1
1 p1)

+
1

|p|4 (P (ξ)G
−1
1 p1, p2)(A21G

−1
1 p1, G

−1
2 p2) + Trg1,P (A12)−

1

|p|2 (P (ξ)G
−1
1 A12G

−1
2 p2, p2)

− 1

|p|2 (P (ξ)G
−1
1 p1, A21G

−1
1 p1) +

1

|p|4 (P (ξ)G
−1
1 p1, p2)(A12G

−1
2 p2, G

−1
1 p1)

− 1

|p|2 (P (ξ)G
−1
1 p1, A22G

−1
2 p2) +

1

|p|4 (P (ξ)G
−1
1 p1, p2)(A22G

−1
2 p2, G

−1
2 p2).

The trace Trg2,P (M21) has the same expression interchanging the indexes 1 and 2 and
using the a priori connection between ξ2 and ξ1, P (ξ2, ξ1). Notice that by definition
is elliptic. It is also rotation invariance since traces are.

We can also consider the operator

Tg(Qt
pAQp) + α

〈P (ξ)G−1
1 p1, G

−1
2 p2〉

|p| ,

where α ∈ R.

Remark 14. Note that
〈P (ξ)G−1

1 p1,G
−1
2 p2〉

|p| corresponds to
〈P (ξ)∇ξ1

C,∇ξ2
C〉

|∇C|g .
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Fig. 1. Illustration of a similarity measure. The values of the similarity measure are computed
between one point x in the reference image (first row, left) and all points y of the secondary image
(first row, right), which is taken from a different viewpoint. In the second row we show a close-up
containing the point x and the value of the similarity measure. Red pixels denote lower values of
C(t, x, y). Note that the minima of the similarity measure occur at the points where the structure of
the secondary image is similar to the reference patch. The comparison windows are ellipses which
correspond to the unit ball mapped according to A and B. The third row illustrates the similarity
landscape for a larger scale. Varying the scale of the analysis corresponds in this case to increasing
the window size.

Let us observe that the expression 〈P (ξ)G−1
1 p1, G

−1
2 p2〉 is invariant with respect

to diagonally related rotations. Let vi ∈ TξiM. Let R = (R1, R2) be a diagonally
related rotation so that

(5.7) R2 = P (ξ)R1P (ξ)
−1.

Let us recall that given an isometry (rotation) in the tangent plane, covector gradients
pi transform as Rtpi. Its associated vector is G−1

i Rtpi = Rt,gG−1
i pi = Rt,gvi where

vi = G−1
i pi is the vector associated to pi.

Since Rt,g
i = R−1

i , we write (5.7) as

P (ξ)Rt,g
1 = Rt,g

2 P (ξ).

Then

〈P (ξ)Rt,g
1 v1, R

t,g
2 v2〉 = 〈Rt,g

2 P (ξ)v1, R
t,g
2 v2〉 = 〈P (ξ)v1, v2〉.

This is the required invariance.
Remark 15. In the conformal case, the expressions can be somewhat friendly. In

the conformal case, we have

Trg1,P (M12) = Trg2,P (M21) =
1

λ1(x)λ2(y)
Tr(M12),
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and the term
〈P (ξ)G−1

1 p1,G
−1
2 p2〉

|p| writes as

1

λ1(x)λ2(y)
(DxC,DyC).

Remark 16. The next example does not fall under either of the classes above. Is
is neither morphologically invariant nor linear. We construct it as the sum of a linear
operator and a first order one that satisfies the morphological invariance

Ct =
a(x, y)

(λ1(x))2
ΔMxC + 2

c12(x, y)

λ1(x)λ2(y)
Tr(DxyC) +

c(x, y)

(λ2(y))2
ΔMyC(5.8)

+ α
〈P (ξ)∇ξ1C,∇ξ2C〉

|∇C|g
,

where α ∈ R. Note that the operator is homogeneous of degree 1 in C.

6. Conclusions. In this paper we define a multiscale comparison of images de-
fined on Riemannian manifolds. Given two images u and v, we introduce intrinsic
multiscale similarity measures to compare their neighborhoods at the points x, y ∈ R

2,
respectively. This could be also applied to the problem of comparing two patches of an
image defined on a Riemannian manifold, which can be defined on the image domain
with a suitable metric depending on the image. This paper contains mostly theoret-
ical results, some (mostly linear) examples of such measures, and the case of some
morphological scale spaces. These similarity measures are useful for the purpose of
computing disparities and correspondences, and determining the most similar patch,
which will be the subject of a future paper [10].

We include here a preliminary result illustrating the comparison measure proposed
in Remark 13. For this measure the matrices A and B are related to the prior
connection. They are defined using anisotropic metrics on the images which are
similar to those used in [5]. Figure 1 illustrates the values C(t, x, y) of this similarity
measure computed between a fixed point x in the reference image and all points y of
the secondary image, which is taken from a different viewpoint. Note that the peaks
of the similarity measure occur at the points where the structure of the secondary
image is similar to the reference patch. We depict the comparison windows on some
of the points. The comparison windows are ellipses which correspond to the unit ball
mapped according to A and B. The second row illustrates the similarity landscape for
a larger scale. Varying the scale of the analysis corresponds in this case to increasing
the window size.
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