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Abstract. In this paper we study the problem of comparing two patches of an image defined on
a Riemannian manifold, which can be defined by the image domain with a suitable metric depending
on the image. The size of the patch will not be determined a priori, and we identify it with a
variable scale. Our approach can be considered as a nonlocal extension (comparing two points) of
the multiscale analyses defined using the axiomatic approach by Alvarez et al. [Arch. Ration. Mech.
Anal., 123 (1993), pp. 199-257]. Following this axiomatic approach, we can define a set of similarity
measures that appear as solutions of a degenerate partial differential equation. This equation can be
further specified in the linear case, and we observe that it contains as a particular instance the case
of using weighted Euclidean distances as comparison measures. Finally, we discuss the case of some
morphological scale spaces that exhibit a higher complexity.
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1. Introduction. Our purpose in this paper is to compare two patches of an
image defined on a Riemannian manifold, which can be defined by the image domain
with a suitable metric depending on the image. The size of the patch will not be
determined a priori, and we identify it with a variable scale. Our approach can be
considered as a nonlocal extension (comparing two points) of the multiscale analyses
defined using the axiomatic approach in [1].

Let us review the fundamentals of that approach. A multiscale analysis represents
a given image at different scales of smoothing, the scale being related to the size of
the neighborhood which is used to give an estimate of the brightness of the picture
at a given point. It is a basic preprocessing step for shape recognition [27] (see [16, 6]
and references therein).

The systematic study of multiscale analyses for images was the purpose of the
axiomatic approach proposed in [1]. Based on a series of axioms which define the
structure of the multiscale space and a set of geometric and photometric invariants,
multiscale analyses were defined in terms of (viscosity) solutions of a parabolic equa-
tion. In the case of linear multiscale analysis they obtained the Gaussian scale space
(already proposed and studied in [28, 24, 25, 49, 18, 17, 26, 48], using also an ax-
iomatic approach in some of those papers). In addition to the Gaussian scale space,
classification covers many of the classical models that were proposed in the literature,
such as the Perona—Malik equation [34] (see also [9]), the Rudin—Osher—Fatemi model
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[36], and the mean curvature motion as proposed in [2].

Assuming the invariance under contrast changes (i.e., monotone rearrangements
of the gray levels), multiscale analyses were given in terms of geometric equations
[12, 11, 33] that diffuse the level sets of the image with functions of their principal
curvatures. Following [1, 16], we refer to them as morphological scale spaces since
they are related to a PDE formulation of mathematical morphology [39]. The case
N = 2 is of particular interest and leads to the motion of level lines by a function of
curvature [31, 13, 20, 21]. Of particular interest is the affine morphological scale space
(AMSS) [1, 37, 38, 32], which is affine invariant and corresponds to motion of level
lines by the power 1/3 of its curvature. The case of scale spaces for three-dimensional
(3D) images gives rise to geometric motions that depend on functions of the two
principal curvatures of the level surfaces [1, 43] (e.g., mean and Gaussian curvatures).
In the case of video sequences, the Galilean invariant scale spaces were characterized
in a similar way to the 3D case, and Gaussian curvature was replaced by acceleration
[1, 16, 14, 15].

Besides this unified trend, scale spaces based on anisotropic diffusion have been
the object of systematic study by Weickert [46, 45], and, although they fall into the
general set of nonlinear models described in [1], they were not axiomatically studied
there. Finally, variational models also give a different approach to image diffusion.
They are also basic ingredients in the regularization of inverse problems. Let us men-
tion here the work of Rudin, Osher, and Fatemi [36], who introduced total variation
as an image regularizer due to its ability to restore edges. A more general formulation
is given in [23, 41, 22, 40], where the authors consider images defined on Riemannian
manifolds where the metric depends on the image and reflects the anisotropy of the
underlying problem (for edge preservation, for color image restoration, for texture
analysis, etc.). Their basic energy functional is the Polyakov action, which is the
extension of the Dirichlet integral to maps between Riemannian manifolds [23, 41].

The axiomatic approach used to classify scale spaces was also used in [8] in order
to classify interpolation operators according to a set of structural requirements and
invariances. Examples are given by the Laplace equation, the AMLE, or the interpo-
lation of level lines by straight lines (related to inpainting/disocclusion [30, 29]). This
approach was later extended to image interpolation on surfaces in [7].

Our purpose in this paper is to define a multiscale comparison of images defined
on Riemannian manifolds. Given two images u,v defined in their respective image
domains (assume R? for simplicity), we want to compare their neighborhoods at the
points z,y € R?, respectively. The simplest way to compare them would be to compare
the two neighborhoods of x,y using the Euclidean distance. That is, let us define

(11) D(t.ay) = [ (e -+ )= oly + 1)) b

where g, is a given window that we assume to be Gaussian of variance t. This formula
gives an explicit comparison and assumes that the image domain is the Euclidean
plane. Let us note at this point that we could have also used the integral of u(z +
h)v(y + h) as a comparison measure. Our purpose is to define such measures in the
case of images defined on Riemannian manifolds (e.g., the image plane endowed with
an anisotropic metric, such as the structure tensor [46, 47, 4, 3, 35]). It will be shown
that these measures are given by the solution of a degenerate elliptic PDE in the
variables (z,y). Unfortunately, in general, it may not always be possible to write this
solution as an explicit formula like (1.1). Let us mention at this point that (1.1) is



MULTISCALE ANALYSIS OF SIMILARITIES 3

not an exception; it solves the equation
(1.2) Dy = A, D + 2Trace(D2,D) + A, D,

which is possibly the simplest case of a linear PDE expressing the multiscale com-
parison of two image patches. In the case of comparing image patches defined on
Riemannian manifolds, there will appear a large family of possibilities, derived from
the axiomatic approach. As in [1, 5], the set of axioms will include architectural
axioms and a comparison principle that permit us to define multiscale analyses as
solutions of a degenerate parabolic PDE. Further specification can be attained by in-
cluding linear or morphological assumptions. The inclusion of geometric invariances
will be subsumed under the requirement of intrinsic definition of the multiscale anal-
ysis, independent of the parameterization of the manifold. This essentially restricts
the invariances to rotation invariance in the tangent plane. The consideration of other
geometric invariance (translation or rotation) will be discussed separately for images
defined in RY, out of the general classification.

One of the examples of linear multiscale analysis of a similarity measure is the
model

(1.3) Dy = Tr(G1(z) ' D2D) + 2Tr(G1(z) "'/ 2Ga(2) "2 D2, D) + Tr(Ga(y) "' DID),

where M; = (RY,G;(x)), i = 1,2, are two Riemannian manifolds, and z € M,
y € Ms. In particular, if we assume that the metrics are constant in both images,
then the model becomes

(1.4) Dy = Trace(A' AD} D) + 2Trace(AB" D,y D) + Trace(B'BD, D),

where A, B are two N x N matrices. The multiscale similarity measure C(¢,x,y) =
Jen 9:(2)C(0, 2+ Ah,y+ Bh) dh, where g, is the Gaussian of scale t, and C(0,z,y) =
(I(z) — J(y))?, satisfies (4.26).

Let us finally say that from the mathematical point of view the basic ingredients
are the papers [1, 8, 7, 5], and our results are an extension of them.

This paper contains mostly the theoretical results that define multiscale analysis
for image comparison. From the analysis we will single out several examples, mostly
linear examples, and the case of some morphological scale spaces whose complexity
is much higher. The use of these comparison measures (distances) for the purpose of
computing disparities, correspondences, or determining the most similar patch will be
the object of a subsequent paper [10]. We include in the last section of the present
paper a preliminary result illustrating the comparison measure of the example above
(see also Remark 13).

Let us finally summarize the plan of the paper. In section 2 we collect some basic
notation and definitions about Riemannian manifolds. In section 3 we define the basic
set of axioms satisfied by multiscale analyses for image similarity measures defined on
Riemannian manifolds, and we express them in terms of solutions of an (eventually
degenerate) parabolic equation. In section 4 we consider the case of linear multiscale
analyses, naturally obtaining that they are expressed as solutions of a linear equation
generalizing the case of (1.2). In section 4.1 we will specify our study in the case
of RV, and the conformal case in RY will be studied in section 4.2 (the Euclidean
case will be the object of section 4.3). Finally, in section 5 we consider multiscale
analyses for image similarity measures that commute with contrast changes, leading
to morphological scale spaces that are expressed by functions of curvature operators.
In this case, their interpretation is much more complex because it probably reflects the
correlations between directions of level lines of both image patches under comparison.
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2. Preliminaries. We collect in this section some basic notation and definitions
about Riemannian manifolds.

Let (N, h) be a smooth Riemannian manifold in R¥*1. As a particular case we
can consider N’ = R (or a domain in RY) endowed with a general metric h;;. As
usual, given a point 7 € N, we denote by T,V the tangent space to N at the point
n. By TyN we denote its dual space.

Let 1 be a point on N, let U C RY be an open set containing 0, and let ¢ : U — A
be any coordinate system such that ¢(0) = 7. Let h;;(n) and Fg’k(n) (indices 1, j, k
run from 1 to N) denote, respectively, the coefficients of the first fundamental form
of A and the Christoffel symbol computed in the coordinate system 1 around 7. For
simplicity we shall denote by H (n) the (symmetric) matrix (h; (1)) and by TV:*(n) the
i\jfk(n)), 1,7,k =1,..., N. We shall use Einstein’s
convention that repeated indices are summed, and we denote (a,b) = a;b’.

The scalar product of two vectors v,w € T, N will be denoted by (v, w),, and
the action of a covector p* € Ty N, on a vector v € T, NV, will be denoted by (p*,v).
Let ¢ : U — N be a coordinate system such that ¢(0) = n, and h;j(n) are the
coefficients of the first fundamental form at n € N in ¢. Then, if v,w € T,N, we
have (v, w)¢ = hij(n)viw’, where v*, w’ are the coordinates of v, w in the basis 52, of
T, N. Using this basis for 7, N and the dual basis on Ty, if p* € Ty N and v € T, N,
we have (p*,v) = p;v’. Notice that we may write (p*,v) = hi;(n)p'v?, where p® are
the coordinates of the vector p associated to the covector p*. The relation between
both coordinates is given by

(2.1) pi = hij(mp’ or p'=h"(n)p;,

where h% (1) denotes the coefficients of the inverse matrix of h;;(n). By a slight abuse
of notation, we shall write (2.1) as

matrix formed by the coefficients (I'

p*=Hp or p=H lp*

In this way H : T)N — TyN. In the case that 1 is a geodesic coordinate system,
the matrix H is the identity matrix I = (d;5), and I maps vectors to covectors, i.e.,
I:T,N — T;/\/’ (with the same coordinates in the dual basis). We shall denote by
I~! the inverse of I, mapping covectors to vectors.

If U C RY, and ¢ : U — N is a coordinate system with (0) = 5, then 1 o
dip(0)~t : U' C T,N — N is a new coordinate system. If we identify ToU with R
and {e;} denotes its canonical basis, then €] = di)(0)e; satisfy (e}, i) = hi;(n). From
now on, we shall use this identification; thus we shall interpret that any coordinate
system around a point € A is defined on a neighborhood of 0 in the tangent space
T,N.

Maps. Symmetric maps. Quadratic forms. We shall also use this coordinate
system to express a bilinear map A : T,N x T,N" — R. Indeed, if (A;;) is the
matrix of A in this basis, and v,w € T,N, we may write A(v,w) = Ayviw’. If
Al = h'*(n)Ag;, then A’ determines a map called A : TN — T,N such that

A(v,w) = (Av,w) = (HAv,w). Observe that H(n)A : T,N — T N. Observe also
that our notation Aij already indicates that A = (AZJ) maps vectors to vectors. In
our notation, we shall not distinguish between matrices and maps.

As usual, we say that a linear map C' : T,N — TyN is symmetric if (Cv,w) =
(Cw,v) for any v € T,N, w € T, N. From now on, we shall use the notation

SMy(N) :={A: TuN — TyN, A is symmetric}.
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We shall also write
SyN) :={A: T,2N - T,N, Hn)A € SM,(N)}.

If we want to stress that H(n) is the metric in T, N, we shall write (TN, H(n))
and denote SM, (N, H), S,(N, H) instead of SM,(N), S,(N), respectively.
If Ae S,(N),veT,N, ceR, we define the quadratic polynomial

(2.2) Q) = %(Aa:, x) + (v, ) + ¢ zeT,N.
Note that
(2.3) Q) = L (Ar.2) + (o) te. e T,N.

where A" = H(n)A € SM,(N), p = H(n)v € T;N.
Notice that if A : T, N — T, N, we define A" : T)N — TN by

(Alp,v) = (p, Av) Yo e T,N,pe TyN.
We define A" : T,N — T, N by
(AP, w) = (v, Aw)  Vv,w € TyN.

From now on, when the point n € N is understood, we write H instead of H(n).
Notice that HA*" = A*H.

If Ae S,(N), then HA € SM,(N) and (HAv,w) = (v, HAw); that is ,(Av, w) =
(v, Aw). That is, Ab" = A.

Rotations in the tangent space. Let us define a rotation R : T,N — T,N as a
linear map that satisfies

(Rv, Rw) = (v, w) Vo, w e T,N.
Notice that rotations satisfy
R'HR = H.

Note also that isometries (rotations) satisfy R%" = R™1.

Let B : T,N — T,N be a matrix such that BI"'B* = H~!. Thus B'HB =
I, and B is mapping an orthonormal basis of (7,,NV/,I) to an orthonormal basis of
(TyN, H(n)).

If R: T,N — TN is a rotation, then

(B'RB)"'B7'RB = 1.

That is, B~'RB is a classical rotation.
Gradient and Hessian. Given a function u on N, let us denote by Dxru and
D3,u the gradient and Hessian of u, respectively. In a coordinate system Daru is the

covector 2 a .. and D? Xru is the matrix 83 gx 5 — I‘N k 8“ which acts on tangent vectors.

Thus, with this notation D3ru(n) : T,N x TN —> R is a bilinear map (7 € ) and is a
symmetric matrix in coordinates. Let us write V au, the vector of coordinates h* %.
Then [Varu(n)] = (Vau(n), Varu(n)),. To simplify our notation we shall write Du
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and Vu instead of Dyu and Vu. The vector field Vu satisfies (Vu,v),, = du(v),
v € T,N, du being the differential of w.

The manifold N' = M x M?. Let (M?, g%) be a smooth Riemannian manifold
with metric ¢°, i = 1,2. Let I'D be the connection on M?*. We shall work here with a
manifold N' = M*' x M? with the metric h = g' x g2, so that TeN = T, M x T, M2,
&= (51,62) e M x M2, If (vi,wi) S Tgl./\/ll X T§2M2, &= (fl,fg) e M x MQ, then

we consider the metric

((v1,w1), (v2,w2))e = (V1,v2)¢, + (W1, Wa)e, = (G (&1)v1,v2) 4 (G (E2)wr, w).

With a slight abuse of notation, let us write G(¢) = diag(G(&1), G?(&2)) instead of
H(e).

Let &€ = (£1,&) € MY x M2, Let us consider a coordinate system of the form
Y = (P1,19) : Up x Uy = M x M? with 1;(0) = &;, U; being a neighborhood of
0 in RY. Write 2 € U,y € Us. Let us denote the connection on M! x M? as
I':=TM oI'® with indices i, 4,k € {1,...,2N} with & = &3, 4 € {1,..., N}, and
& = &-ny, 1 € {N +1,...,N}. Denote the coordinates as 24 i e{l,...,2N}, with
=2t ic{l,...,N},and 2 = y~N ic {N +1,...,N}. Using the formula

8hjl 8hil B %
0%t 0zJ ozt )’

1
1 20\k __ kl
W or®hk = Sh <

we obtain

Wk
rO ey - (00 Gl )

We denote by SM¢(N) the set of symmetric matrices of size 2N x 2N in N =
M x M2,

A priori connections on N' = M x M?. This is an important concept in this
paper and we need to clarify it. Suppose that both manifolds M! and M? coincide
with RY endowed with the Euclidean metric. Let u,v be two given images in RY.
Then it would be standard to use the L? distance to compare the patches centered at
x and y,

(24) D(t.ay) = [ W)t + 1) = vly -+ W) dh

where g; is a given window that we assume to be Gaussian of variance ¢t. But if the
image v is rotated, we could also use the L? distance between u and a rotated version
of v (around y), namely,

(2.5) Dtz y) = /RN gu(B)(uz + h) — v(y + Rh))2 dh.

We admit that this decision is taken a priori and is done thanks to an operator that
connects the tangent plane at both points.

Let £ = (&1,&) € N = My x Ms. Let us consider a coordinate system of the
form ¢ = (1, 12) : Uy x Uy — M* x M? with ;(0) = &;, U; being a neighborhood
of 0 in R¥.

DEFINITION 2.1. We say that P(§), £ = (&1,&) € N, is an a priori connection
map in N if P(€) : (Te, MY, G (&1)) = (Te, M?,G?(&2)) is an isometry, i.e.,

<P(£)U7P(€)M>G2(f2) = <U7w>G1(E1) VU,U} € TflMa



MULTISCALE ANALYSIS OF SIMILARITIES 7

and we assume also that the map is differentiable in &.

Given an a priori connection P(€) : (Tg, MY, G (&) — (Te, M2, G%(&2)), we can
also define its inverse P(&)™! 1 (T, M?,G*(&)) — (Te, MY, G*(&1)). For simplicity,
and understanding that the arguments in P say if we go from M" to M? or inversely,
we denote P(&,&1) = P(&1,&)7 !, we have

(2.6) P(&2,61)P(&1,&) =1.

Let us note that if the (orientable) manifold M! = M? = M admits an a
priori connection (into itself), then there is a section of the frame bundle (bundle of
orthonormal frames). This is equivalent to saying that there is a section of the bundle
of reference systems. This is the notion of parallelizable manifolds. The manifolds
(RN, g(x)) are parallelizable. If M has dimension 2, then M is parallelizable if and
only if its Euler—Poincaré characteristic is 0 [44]. Any orientable manifold of dimension
3 is parallelizable [42].

Remark 1. Note that if we have a complete manifold with empty cut locus, we
can define the a priori connection in it by parallel transport without ambiguities.

Remark 2. Note that if P(£) is an a priori connection and we give two maps
R: M! — Isom(TMY), R : M? — Isom(TM?), then R(&)P(€)R(&1) is also an a
priori connection.

In coordinates, P(§) expresses the a priori connection in the coordinate system
11 — 9. The isometry property can be written as

(P(&)'G*(&)P(&)v,w) = (G (&1)v,w),

where P(€) is expressed in the basis of T, M! associated to the metric G'(£;) and
the basis of T¢, M? associated to the metric G?(&>). Then

(2.7) P(§)'G*(&)P(€) = G (&1)-

Let us compute the a priori connection in another coordinate system. Let ) =

(11, ,) be another coordinate system around £. Let Gi(&),G (&), i = 1,2, be

the metric matrices represented in the coordinate system 1;, 1, respectively. Let

B@i,éi (fl) = D(¢;1 O_i)(O), i=1,2, and BG7E(€) = (Bcl)al (61)5 Bg2)62 (52)) Note

that B, (&) : (T, MY, G (&) — (Te, M7, G¥(&)) is such that

(28) B g (€)'GU(6) B (&) = G (&),

Note also that all matrices here are uniquely defined.
Using (2.8), we express (2.7) as

(2.9)
PY()Bga (&) G (&) Bga 2 (€)' P(€) = B 1 ()G (61) B g (€1) 7

If we define

(2.10) P(E) == Bua 52(62) T P(&) By 1 (61):

then P(€) is an a priori connection in the coordinate system v, — 1y, P(€) : (Tg, M*,
G(&) = (T&Mz,éz(ﬁz)). Indeed, we can express (2.9) as

(2.11) P'(6)T (&)P(E) =T (&),
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which is the isometry property defining a priori connections. We say that P(€) is the
derived a priori connection from P(§) and .
We can rewrite (2.10) as

(2.12) By g (€2)P(€) = P(©) By, g (61),

and we see that both maps B, = (&1) and B g2 (&2) reflect the same rotation when

expressed in the corresponding a priori connections P(¢) and P(€), respectively.

DEFINITION 2.2. We say that the coordinate systems 1,1 are P(&)-related if
P(€) is defined by (2.10). We will also say that they are R-related.

Let us consider the case where M' = M? = M and P(¢) is an internal a priori
connection given from parallel transport between & and &, which is an isometry.
Then one can define P(£) by parallel transport expressed in the coordinate systems
wla ¢2'

Generation of a priori connections. Fix a geodesic coordinate system around each
point of M?. I(&;) is referred to this system for each & € M. For each £ € N, let

us consider an isometry map (assuming that it exists)
Q) : (Te, MY TH(&)) — (Te, MP, TP (£2)).

Call Isom((TM*, '), (T M?,I?)) this set of maps. Let us note that this is nothing
else than an a priori connection. We just have one concept, and we express it in
different coordinate systems.

Thus what we are going to do is to give the a priori connection ) in a geodesic
coordinate field GS and derive its expression in another coordinate system field.

Let B'(&) : (Te; MU, THE)) — (Te, M, GY(&;)) be the corresponding canonical
maps connecting a geodesic coordinate system GS around &; to (T¢, M*, G*(&;)). Thus

BY(&) G (&)B (&) = I'(&).

Note that the map B*(¢;) is uniquely defined by the coordinate systems. Changing
(rotating) the geodesic coordinate system, we get a different matrix.

Let Q(&) € Isom((T MY, 1Y), (TM?,1?)), where each I is referred to GS, and let
us define

P(¢§) = B*(&)Q()B' (&)
Then P(§) is an a priori connection map.
Let GS be another geodesic coordinate system field. Let Q&) : Isom((T M, IY) —
(TM?, 1)), where each I is referred to GS. Let B' (&) : (Te, M, TH(&;)) — (Te, M', G (&))

be the corresponding map connecting a geodesic coordinate system GS around §; to

(Te, M', G'(&;)). Thus
B'(€)'C(€)B (&) = I'(&).

Note that the map B (&) is uniquely defined by the coordinate systems. Changing
(rotating) the geodesic coordinate system, we get a different matrix. Note that from
the abqve 'identities, it is easy to check that B*(&;) ™' B, & (&)B' (&) : (Te, M, TH(E;)) —
(Te, M*, I'(&;)) is a (classical) rotation.

Let us define

P() =B (£)QE)B (&) "
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Then P(¢) is an a priori connection map.

Let us express that P(¢) is the derived connection from P(£) in terms of Q(€)
and Q(€). Indeed, P(€) is the derived connection from P(£) and is written as (2.10).
Introducing the definitions of P(¢) and P(€) into (2.10), we see that Q(€) is derived
from Q(&) if and only if

(213)  Q(6) = [B2(&) By g2 (€)B (&) QOB (€1) By g1 (€)B (€1))-

One interprets this by saying that [B*(&2) ' B, &2 (52)?2(52)] expresses the same
Fuclidean rotation in different coordinate systems.

When is Q(§) = Q(§)? It is when we use the same coordinate systems for the
identity maps appearing in B*(&;) : (Tg, M, I'(&;)) — (Te, M*, G*(&;)) and in B'(&) :
(Te, M, TH(&;)) = (Te, M, G'(&;)), that is, when GS = GS.

Related rotations. Let us consider a coordinate system field and an a priori con-
nection P(§) : (Te, MY, G (&) — (Tg, M?,G?(62)) in that system field. Let us
consider a second coordinate system field with metric G (&) = G¥(&;), i = 1,2, for
?Ch & € M so that BG,i)ai (&) is an isometry field. Let R'(&;) := BG,i)ai (&). Let
P(&) be the derived connection. Then (2.12) can be written as

(2.14) R*(&) = PR (&)P(§)~".

We say that (R'(&;), R%(&2)) are P-related or R-related, and we call R = (RY(&1), R%(&2))
a diagonally related rotation (or just a diagonal rotation if no confusion arises).
Related germs of functions on N' = M x M?. Let Cy(N) denote the space of
bounded continuous functions in A/ with the maximum norm. We think of C,(N) as
the space of similarity functions on N’ = M*! x M2, We denote by C;°(N) the space
of infinitely differentiable functions on N.
Let C € Cy(N). Let us denote

(C.9)(z,y) = C(¥1(x), ¥2(y)) V(z,y) € Ur x Ua.

Thus, we can say that ¢ = (¥1,12) and ¥ = (¥;,1,) are R-related if (2.14) holds. If
1 is R-related to v, we write (C,v) as R(C,1). Note that R(C,) is a linear map
for the restriction of functions in Cy(N) to a neighborhood of (0,0).

Gradient and Hessian. We denote by SM¢(N') the set of symmetric matrices of
size 2N x 2N in N' = M! x M?. In coordinates, we denote D C = (D,C, D,C) by

2 _ DN7$wC D/\f,acyc
Dy C = ( DarosC DanC )

In coordinates, with i, 5,k € {1,..., N},

2 e —awafacyj IOk () 25 0
DyC=\ "¢ “wd |- ( 0 T2k (y)2C ) :
Oyl 0zt Oy'OyJ oyF

3. Multiscale analysis of image similarity measures. For simplicity, we
shall write A' = M! x M2, The metric will be denoted by ¢ = ¢! x ¢°, and
G(€),G (&),G?(&) will be the corresponding matrices, & = (£1,&) € N.  Let
(k) := Ky, be an increasing sequence of nonnegative constants.

(k) :={C € C*(N) : | DClloc < kn Yn >0 V|| <n}.
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As usual, O(f) (resp., o(f)) will denote any expression which is bounded by
C|f| for some constant C' > 0 (resp., such that % — 0 as f — 0). Assume
that T; : Cy(N) — Cy(N) is a nonlinear operator for any ¢t > 0. We shall denote
C(t,z,y) = T:C(z,y), C € Cp(N). Assume that we are given an a priori connection
PonN.

Our motivation for the proposed set of axioms is the same as in the pioneering
work of [1], to which we refer the reader for a detailed justification.

Architectural azioms.

[Recursivity] Tp(C) = C, Ts(T:C) = Ts+1C Vs, t > 0,YC € Cp(N).

The recursivity axiom is a strong version of causality which implies that the
similarity measure at a coarser scale can be deduced from a finer one, which is a
natural property in image analysis and a sound hypothesis in human vision [1].

Tn(C,9)(€) = (C,9)(€)
h

[Infinitesimal generator] — (A(C),y) ash— 0+
for any C' € Cp°(N) and any coordinate system ¢ = (¢1,12) around {. We assume
that

B.1)  T(R(C,9))(E) = R(TH(C), ¥)(§) +o(t) = Ty(C)(§) +ot)  ast— 0+

for any C' € Cy(N), any coordinate system v = (11,%5), and any R’s which are P-
related rotations. We have denoted by R(C, ) the function in the coordinate system
1) which is P(¢)-related (or R-related) to .

Writing (3.1) in terms of the generator A, we have

R(C,9)(0) + LA(R(C, 9))(0) + o(t) = R((C, ¢) + LA(C, ))(0) + o(t)
= C(§) +LA(C, 9)(0) + o(t).

Using the linearity of R(C, ), dividing by ¢, and letting ¢ — 0+, we obtain
(32) A(R(C,4))(0) = RA(C, 4)(0) = A(C,+)(0)

for any C' € Cp(N), any coordinate system 1) = (¢1,2), and any R P-related rota-
tions.

Remark 3. In T3 (R(C,4))(§) the a priori connection is expressed in the coordinate
system ¢ = (¥,%,). In R(TH(C),¥)(€) = (Ty(C),¥)(€) the a priori connection is
expressed in the coordinate system ¢ = (¢1,12). That is, the infinitesimal generator
axiom says that both expressions are the same (intrinsic character of 7}) when the
coordinate systems are R-related.

Remark 4. The infinitesimal generator axiom contains the invariance with respect
to diagonal rotations in the tangent plane of M x M2, When (M?, G?) = (M, G) =
(RN, ) it amounts to invariance with respect to Euclidean diagonal rotations in R?V.
That is, T(RC) = RT3(C) for all t > 0, for all C € C°(RY x RY), and for all
R € O(N) (Euclidean rotations in RY), where RC(z,y) = C(Rz, Ry).

Remark 5. When M = RY with the Euclidean metric the axiom is just

.C—-C
—_ =

[Infinitesimal generator] A

A(Cash — 0+ .
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This holds for any C' € Cf°(RY x RY).
In some sense the coordinate system around each point is always the same—the
canonical system; they are related by the identity.

[Regularity axiom] || Ti(C+hC)—(Ti(C)+hC)||ee < Mht Vh,t € [0,1],VC,C € Q((k)),

where the constant M depends on Q((k)).

[Locality] T3(C)(z) — Te(C)(x) = o(t) ast— 04, z € RN VC,C € Cy(N)

such that D*C/(x) = D*C/(x) for all multi-indices a.
Comparison principle.

[Comparison principle] T:C < T.C Vt>0, VC,C e C(N)

such that C < C.

The comparison principle is an order-preserving property. It means that if a sim-
ilarity measure is always smaller than another, then applying a multiscale analysis
does not invert this relation. Intuitively, the multiscale analysis produces low resolu-
tion versions of the similarity measures, which should be consistent with the initial
ones.

Morphological axioms.

[Gray level shift invariance] T3(0) =0, T3(C + k) = T3 (C) + &
vVt >0, VC € Cy°(N), Vk € R.

[Gray scale invariance] Ti(f(C)) = f(T:(C)) Vt >0, VC € Cy°(N),

and for any strictly increasing function f: R — R.

Let us clarify that in this work the morphological axioms are required not for the
images but for the similarity measures. We have followed the same terminology as in
[1, 5].

THEOREM 3.1. Let Ty be a multiscale analysis satisfying the recursivity, in-
finitesimal generator, and regularity azioms. Then A(C,) — A(C) in Cp(N) if
Cy,C e C°(N) and D*C, — D*C in Cy(N) for all o with |a| > 0.

The proof follows the same lines of the corresponding result in [1], particularly
section 3.1, Theorem 1 (see also Theorem 3.1 in [5]), and so we shall omit it.

The following results were proved in [1] (section 3.2, Theorem 2) for multiscale
analysis on images and extended to images on manifolds in [5] (particularly in Theorem
3.2). We follow the presentation in [5].

THEOREM 3.2. Let T} be a multiscale analysis satisfying all architectural axioms
and the comparison principle. Then there exists a function F': SM¢(N') x Tg}\/ X R x
N — R increasing with respect to its first argument such that

Tt(Ca w) — (Ca w) N F

- (D?(C o) (0), D(Cov)(0),C(£),&, G, T*)in Cy(N) as t — 0+

for all C € CP(N), ¢ being a coordinate system around & € N'. The function F
is continuous in its first three arguments. If we assume that T; is gray level shift
imwvariant, then the function F does not depend on u.
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Recall that we have denoted G = (G',G?) and T’ = T @ T'®. Notice that we
did not denote explicitly the arguments for G,T'*. Notice that the first argument in
F is a symmetric map from TeN to TN

Remark 6. We could also have written F as a function F : S¢(N)xTeN xRN —
R, so that F(A,v,c & G, T¥) = F(GA,Guv, ¢, &, G, TF).

Let us make precise our statement that the function F' is increasing in its first
argument.

LEMMA 3.3. Let £ € N, and let ¢ : U — N be a coordinate system around €.
Let G,T* be the metric coefficients and the Christoffel symbols of N in the coordinate
system 1) at the point . Let Ay, Ay : TN — TE*N be two matrices such that A1, As
are symmetric, p € Tg‘]\/, ceR. If Ay < As, then

F(A1,p,c,&,G.T%) < F(Az,p,c,&,G,T%).

Thus F is elliptic.

THEOREM 3.4. Let T; be a multiscale analysis satisfying the all architectural
azioms, the comparison principle, and gray level shift invariance. If C(t,&) = T:C(§),
then w is a viscosity solution of

(3.3) Cy = F(D3,C,DC,¢,G,T*),

with C(0,&) = C(§).

The proof that C(t,&) = T;C(&) is the viscosity solution of (3.3) follows as in [1,
section 3.2, Theorem 2], [16, Chapters 19 and 20].

The next lemma is crucial in what follows. It relates the matrices and vectors
defining a quadratic polynomial in two coordinate systems around a point & € M.
For a proof, we refer the reader to [7] (particularly Lemma 2).

LEMMA 3.5. Let U,U be two neighborhoods of 0 in R*N, and let ¢ : U — N,
2 U — N be two coordinate systems around the point € € N, i.e., ¥(0) = &,

¥(0) = &£ Assume that the change of coordinates ¥ = ¢p~lto : U — U is a

diffeomorphism. Let G,T = T @ T (resp., G,T = f(l) ® f(Q)) be the metric
coefficients and the Christoffel symbols of N in the coordinate system 1 (resp., 1) at
the point €. Let Q : U — R be the quadratic polynomial

(3.4) Q) = %(GAU, v) + (p,v) + c.

Let Q(v) := (Q o W)(v). Then Q(v) = Q'(v) + O(|v]®) in a neighborhood of 0, where
Q' is the quadratic polynomial

(35) Q) = 5(@B~'ABv,0) + S (T(B'D)(), ) — 5 (BT(p)(Br), ) + (B'p,0) +c.

1 1
2 2
and B = DY(0).

Note that we have denoted v € TeN, p € (TeN)*, A € Se(N).

We are interested in the application of this lemma when ¢ = (¢1,19), ) =
(1,105), so that B = (B, B?), where B' = D (3, '01,)(0) and B? = D(¢)5 ' 01,)(0).
The map B satisfies

(3.6) B'G =GB
In coordinates, for ¢ = 1,2, we have

(3.7) (B)'Gi(&) =G (&)(B) .
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PROPOSITION 3.6. Let Ty be a multiscale analysis on N satisfying the architec-
tural azioms and the comparison principle. Let v = (Y1,2) : U = Uy x Us — N be a
coordinate system around € € N. Let G, T be the metric coefficients and the Christof-
fel symbols of N in the coordinate system 1 at the point . For any symmetric matriz
X = (Xij) : (TN, I) = (TENLI) in SMe(N, ), g € (TEN, ), and a € R, let us
define the function

(38) H(X7q7a7€):F(Xaqaaaga-[ao);
that is, H is the function F' obtained when using a geodesic coordinate system. Then
(3.9) F(A,p,a,&G %) =H(BY(A—-T(p)B, B'p,c,¢)

for any matriz A € SM¢(N'), and any covector p, where BB' = G=1. Moreover, the
function H satisfies

(3.10) H(A' P c,§) = H(R'A'R, R'Y, ¢, ),

where A" : (TeN, T) — (TGN, 1) is any matriz in SMe(N,T), p' € (TGN, I), and R
is any Euclidean rotation in (TeN,I) of the form R = diag(Ro, Ro) where Ry is an
Euclidean rotation in (TeM, I).

Our notation BB* = G~ contains a slight abuse of notation, since B : TeN —
TeN and B : TEN — TN The correct notation should be BI~"B'.

Although the proof is essentially contained in Proposition 3.6 in [5], the statement
is slightly different because rotations in TN have a diagonal form. We give the
detailed proof in order to clarify this. This is due to our assumption in the infinitesimal
generator axiom of the covariance with respect to R-related coordinate systems.

Proof. We use the notation of Lemma 3.5, so that B = (BG17é1 (&1), B @2 (&2)).
Note that the quadratic forms @ and Q are P(¢)-related (or R-related). For conve-
nience then we use the symmetric map GA. Since Qovy~! = @OEA in (U)Ny(U),
with a slight abuse of notation (act 73 on polynomials), using the infinitesimal gener-
ator axiom, we have

) iy 1492V O = Q0O _ g e,
and

i T@00 )© ~Qov (@)
(3.12) t—0 t

— F(GB ' AB +T(B'p) — B'T(p)B, B'p,¢,&, G, T);

that is, they are the expressions in the corresponding coordinate system, and they
coincide since both are P(§)-related; i.e., we have

(313)  F(GA,p,c.€,G,T¥) = F(GB ' AB + T(B'p) - BT(p)B, B'p,,&,G,T")
or, using (3.6),

(314)  F(GA,p,¢.€,G,T") = F(B'(GA—T(p))B +T(B'p), B'p,c.&,G,T").
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Now, for any symmetric matrix X = (X;;) € SM¢(N), any ¢ € Ty N, and a € R, let
us define the function F by the identity

(3.15) F(X,q,a,¢,G,T") = F(X +T(g), ¢, a,&,G,T).
In terms of F, (3.14) can be written as
(3.16) F(GA —T(p),p,c,€,G,T%) = F(B(GA —T(p))B, B'p,c,£,G,T").

By varying the quadratic polynomials, the above equation holds for any matrix A =
(A%) such that GA € SM¢(N'), any diagonal invertible matrix B : TeN — TeN (bet-

ter B = (B(&1), B*(&2)) = (Bgi gt (61): Bga g2 (62)) and B(&) : (TeM, G (&) —
(TeME,GH(E))), and any p € TeN. Here B'G = GB~L. This holds in particular for
any diagonal rotation R = (R, Rz) (related by (2.12), and we use this convention in
what follows) in Te N (so that R'GR = G):

(3.17) F(GA—T(p),p,c,£,G,TF) = F(RY(GA — T(p))R, R'p, c,€, G, T").

Now, we choose 1) as a geodesic coordinate system around ¢ for which G = I, and
I'* = 0. In this case, (3.6) can be written as G = B*IB = B!B. We may write (3.16)
as

(3.18) F(IA,p,c,€,1,0) = F(BIAB, Btp,c,&, B'B,T"),

and this identity holds for any symmetric matrix [A € S_Mg(]\/ ,I), any vector p €
T M?, and any diagonal invertible matrix B (the metric G = B'B). Once again, we
change variables and write A’ = B'TAB, p' = B'p, B’ = B~!. Then we write (3.18)
as

(3.19) F(A,p,c,6,G,T") = F(B"A'B', B"p,¢,¢,1,0),

and this identity holds for any symmetric matrix A" : TN — TEN in SMe(N, G),
any p' € T/N, and any diagonal invertible matrix B’ : TeN' — TeN, where G =
(B')~1B'~!. This clearly shows that F' does not depend on G and T'* in the last two
arguments. All its dependence is contained in the first argument. Let us introduce
the function H to make this explicit.

Now, for any symmetric matrix X = (Xj;) : (TeN, I) — (T¢N, 1) in SM(N, 1),
any q € (Tg‘ N, I), and scalar a, let us define the function H by the identity

(320) %(X7q7a7€) :F(X7q7a7£7-[70)'
Note that by (3.15), and (3.20), we have
H(X7 q7 a’ f) - F(X7 q7 a7 67 I7 O);

that is, H is the function F’ obtained when using a geodesic coordinate system. Hence,
(3.19) can be written as

(3.21) F(A P, c,6,G.T") = H(B"A'B', B, ¢, ),

and using (3.15), (3.20), we have formula (3.9). Note the role of B’ which makes
B'A'B": (TeN, I) — (T¢N, I) symmetric. In particular, if we take ¢ as a geodesic
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coordinate system around &, and 9 to be a Euclidean diagonal rotation R with respect
to 1 (both are R-related) so that B’ = R, G = R'IR = I, and T" = 0 at the point £,
then (3.16) can be written as

(3.22) F(A,p,c,&,1,0) = F(R'AR,R'p,c,&,1,0),
that is, as
(323) H(A/7p/7c7 6) = H(RtA/R?Rtp/7 C7 5)7

where A" : (TeN, I) — (T¢ N, 1) is any matrix in SMe(N, 1), p' € (T; N, 1), and R is
any Euclidean diagonal rotation in (TN, I).

Note that the general expression of rotation invariance is written in terms of F
in (3.16), (3.17). O

Remark 7. Let us write the rotation invariance in the tangent plane in terms
of F. If we consider the quadratic form @ in the coordinate system ¢ = (¢1,12) :
Bt n(0,7) = N given by

1
Q(’U) = §(SU7U) + (p,U) +
where S € SM¢(N), we consider the diagonal rotation R : TeN — TeN and define

(SRv, Rv) + (p, Rv) + ¢ = Q(Rw).

N | =

Qw) =

Consider the function C(¢) = Q(¢»~1(¢)). In the coordinate system v : By nr(0,7) —

. — S — ~, 1 . .
N given by B(v) = ¥(Rv), C(¢) = QR™1() = Q@ (). That is, C is
expressed by @ in the coordinate system 1. Both expressions are R-related. Then by
the infinitesimal generator axiom

t

S7p7 E’ G)Fk)7

Tt(R(Cv 1#))(52 B R(Ca ¢)(§) N F(RtSR, Rtp, 57 (;v7 f\k)
Thus
(3.24) F(S,p,& G,T*) = F(R'SR, R'p,&,G,T").

Notice that the metric does not change, but the connection does.
Remark 8. If BB* = G~ !, then

(3.25) H(B'AB, B'p,c, &) = H(R'B'ABR, R'B'p, ¢, £),

where A : (TN, G) — (TN, G) is any matrix in SM¢(N, G), p € (T{N,G), and Ris
any Euclidean diagonal rotation in (TeN, I). Note that B'AB : (TeN, 1) — (T¢N, I)
is any matrix in SM¢(N,T), and B'p € (T;N,I). Note that BR : (TeN,I) —
(TeN, G) satisfies

<BR’U, BRw>gl xg2 = <1}, w>[><[.

That is, it is an isometry matrix from (TeN, I) to (TeN, G).
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We can also write the rotation invariance of H in a different way. Start with
(writing A’ = GA —T'(p))

(3.26) F(A',p,e.€,G.I*) = F(R'A'R R'p,c.¢, G.T")
for any diagonal rotation R in (TeN, G), and use (3.21) to obtain
(3.27) H(B'A'B, B'p,c,&) = H(B'R'A'RB, B'R'p, ¢, §).

Note that RB is a diagonal isometry from (TeN, I) to (TeN, G).
Let us comment on the implications of coordinate symmetry. Let

(3.28) 5=<? é)

Let us assume that M! = M? = M (with different metrics). Let us consider the
axiom

[Axiom of symmetry of the two coordinates] If SC(&1,&2) = C(&2,&1), then
Ty(SC) = ST,(C) V¥t>0, VC € C°(M x M).

Note that if the coordinate system around & that we use when we compute 73 (C) is
¥ = (Y1, 12), then we use S¢ = (12, 11) when we compute T3(SC). We should write
then T;(SC, Sv) = STy (C, ). Perhaps we incur herein a slight abuse of notation.

Since D2.S(C)(¢) = SD3,C(S€)S, DarS(C)(€) = SD%.C(S€), and, letting STM®
T@)F() == ST @ T?)k(S€)S, we have

we obtain the following lemma.

LEMMA 3.7. Let Ty be a multiscale analysis satisfying the axioms, including all
architectural axioms, the comparison principle, the gray level Shift invariance, and
the symmetry of the two coordinates invariance. Then F satisfies

F(SAS, Sp,&,5G(£),T*(5¢)) = F(A, p, 5¢,SG(£),I*(5€))
VA e SN), Vpe N\ {0},V¢ e V.

Note that the two last arguments are the same; the invariance is expressed in the
first three arguments.

4. The linear case. The proof of the next lemma is elementary and can be
found in [5] (particularly in Lemma 5.1).
LEMMA 4.1. Let M be a Riemannian manifold. Let D be a matriz such that

RDR'=D

for all rotations R in (T, M,G(n)). Then D = \G(n)~' for some X € R.

THEOREM 4.2. Let T; be a multiscale analysis on similarity functions satisfying
the axioms, including all architectural axioms, the comparison principle, and the gray
level shift invariance. Assume that T is linear. Then

Ct = F(Di/C,&,G),
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where

F(X,&G) =i (OTr((GH) (&) X11) + 2¢12(€, G)Tr (Do (&1) X 12)
+eaa () Tr((G?) 7 (&2) X22),

where D1y is an isometry from (Te, MY, G'(&1)) — (Te, M?,G%(&2)). The ellipticity
of F implies that c11,c20 > 0.
Moreover, we could add that

(4.1) 2c12(€, G)DioI' (61) 7" = B*(&2)D'B' (&))",

and the dependence of c12(&,G) D121 (1)~ ! on G is only in B2%(&) (isometry) and
B(&)! (isometry). D’ is a matrix that depends only on £ (see Remark 9 below). We
could also write the second term as 2co1 (€, G)Tr(Da1I%(&2) 1 Xa1).

Note that the operators c;(€)Tr((G*)~1(&)Xi;) are multiples of the Laplace—
Beltrami operator. Notice also that there are no first order terms in these operators.
They cannot couple with vectors so that we have the required invariance induced by
the rotations of tangent planes.

Proof. Since T} is gray level shift invariant, F' does not depend on ¢. On the other
hand, it does not depend on I'*. The linearity of T; and Theorem 3.2 imply that in
terms of the function F

F(TXl + 5X27Tp1 + SPQava) = TF‘(leplvgaG) + SF(XQaPQava)

for any X1, Xo € SM¢(N), any p1,pa € Tg/\/’, and any r,s € R. By taking X; = X,
Xo=0,p1=0,pa=p, r=1,5s=1, we write

F(X,p.€,G) = F(X,0,6,G) + F(0,p,&,G) = K'(X,£,G) + K" (p,&,G),

where K’ is linear in X and K" is linear in p. Moreover, from the rotation invariance
of F,

F(X,p,&,G) = F(R'XR,R'p,&,G) ¥ diagonal rotations R in (TeN, G(£))
(diagonal means R = (R1, R2) and Ry, Rs are related), we deduce that

(4.2) K'(X,§,G) = K'(R'XR,¢,G),
(43) K”(p,f,G) = K//(Rtpagaa)'

X1 X
X =
< Xo1 Xoo )’
where X9 = X},. We also write
(R0
r=( R

where Ry : (Te, M', G*(&1)) = (Te, MY, G (&1)) and Ry : (Te, M?,G?(&2)) — (Te, M?, G*(&2)),
with Ry P(£) = P(€)Ry. Then

Let us write

RIXR — < RiX11R1 RiXi12R )

RLXo Ri RLXaoR»
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Since K’ is linear in X, we have
K'(X,§ G) = K11(X11,€,G) + K15(X12,€, G) + K3 (X21, €, G) + K35 (X22,€, G),
where each K;;(X;j;,&,G) is linear in X;; and by (4.2) we have

K (RIX11R1,€,G) = K{1(X11,&,G),

(4.4)
KiQ(R§X12R27€7 G) + Kél(R§X21R17€7 G) = K{Q(X127€7 G) + Kél(X217§7 G)a

Koo (RyXos R, €, G) = Ki5(X22, €, G).
At ¢ fixed, and for ij = 11,22, K{j(Xij,ﬁ,G) is a symmetric linear function of the

eigenvalues of X;;. Then there exists a matrix D;; : (Te, M*,G*(&)) = (Te, MY, G¥(&))
(depending on &, G) such that

Kz(j (Xij, f, G) = Trace(Dinij).
From the rotation invariance
Trace(Dinij) = Trace(DininjRj) = Trace(RjDininj).

Since this is true for all X;;, then RjDinf- = D;;. By Lemma 4.1 we have that
Di; = ¢;;(&,G)(GY)71(&;) for some constant ¢;; (€, G).

Now, K{5(X12,&,G) + K5 (X21,&,G) is a linear function of Xi5. Thus there is a
matrix Dj; such that

Ki5(X12,§, G) + K51 (Xo1,§, G) = Trace(D15X12).

Since the map has to be an endomorphism, D}, X1 has to be a map (T, M?, G%(&)) —
(Te, M2, G2(E2)). Since Xy + (Te, M2, G2(6)) — (Te, ML, G1(&))", we write the
map Dij, = DipI(§1)~", where I(&1) : (Te, MY, GH(&1)) — (Te, M, GH(&1))" and
Dy i (Te, MY, G(&)Y) — (Te, M?,G%(&2)). Using the rotation invariance (4.4), we
have

Trace(Dio I (€1) * X12) = Trace(Dia ' (&1) ' Ri X 12 Ry)

(4.5) = Trace(RoD1oI" (&1) ' RE X10).

Note that all maps inside the traces map (T¢, M?, G%(&)) — (Te, M2, G*(&2)). This
implies that

Di2I(61)™" = ReD12I(61) ' RY,
that is,
D1y = RyD1oI" (&) ' RIT (&),

as maps from (Tg, M*, G*(&1)) — (Te, M?,G*(&2)). Let us observe that I (1) RITY (&)
(Te, MY, G (&) — (Te, M, GY(&1)) is an isometry and denote it by Ei =I'Y(&) RN (&).
We can write

(4.6) D1oR; " = RyDso.
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Let us interpret Ro as a representation of the isometry group of (Tg, M?, G*(&2)),

and El_t is a representation of the isometry group of (T¢, M*, G*(&1)). Denote them
by p(R) and p(R), respectively (R represents a rotation). Note the slight abuse of
notation writing R in both cases, but note that R; is determined by Rs, since both
are P(¢)-related. Then p(I) = I and p(I) = I. Note also that I = p(RR™!) =
p(R)p(R~1); thus p(R™1) = p(R)! (they are isometries). The same is true for p(R).
We rewrite (4.6) as

(4.7) D12p(R) =p(R)D12 VR.

By transposing we have

(48) p(R)'DYy = DIp(R)  WR.

After multiplying by Dqo,

(4.9) Di2p(R)'DYy = DisDLp(R) YR,

Writing (4.7) with R ! instead of R and using that p(R™1) = p(R)!, p(R™1) = p(R)?,

we have

(4.10) Dip(R)' =B(R)!D12  VR.
Combining (4.10) with (4.9), we have

(4.11) B(R)'D12D}y = D12 Di5p(R)" VR.

Then, by Schur’s lemma [19], there is a constant ¢ € R such that D;2D%, = cI. Thus,
either D12 = 0 or %Dlg is an isometry in (Tg, M, G (&1)) = (Te, M?,G%(&2)). Note
that this cannot be improved since, reading this backward, we have that (4.4) holds.
Let us note the constant ¢ as 2¢12(§, G).

We have proved that

(4.12) K15(X12,&, G) + Kby (Xo1,€,G) = 2¢12(€, G) Trace(D121' (61) ' X12),

where D1y : (Te, MY, G (&1)) — (Te, M2, G%(&2)) is an isometry.
Since for i = 1,2, we can write

Kii(Xii, &, G) = ¢ii(€, G) Trace((G") 1 (&) Xui) = cii(§, G)Trace(B' (&) (B")" (&) Xai)
= ¢ii(€, @) Trace((B")" (&)X B' (&) = Hau(B' (&) XiuB' (&), 0,6),

where H,;; is linear in its first argument (see (3.21)), we deduce that ¢;;(§, G) does not
depend on G. The ellipticity of F proves that ¢;(£) > 0,47 =1,2.
Let us prove that K (p,&, G) = 0. Now, by (4.3) we have

K"(p,&,G) = K" (R'p,€,G)
for all diagonal rotations as above. Let p = (p1,p2). Then we may write
K”(p7 57 G) = K{/(ph 57 G) + Ké/(p% 57 G)7

where K" is linear in p; (§, G fixed). Thus, letting p; = 0 and p2 = 0, respectively,
we deduce

Kz{l(pia 57 G) = K;I(prza 57 G)
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for i = 1,2. Thus K does not depend on p; but depends only on its modulus; that
is,

Kl{/(pi,f, G) = Kz”(lpl

(¢)-1,§G)

for some function K.
Let us compute the modulus. Observe that

(Ripi, Rip}) = ((G") 1 (&) Ripi, Rip}) = (Ri(G") ™" (&) Rips, p})-
From R!G'(&)R; = GU(&;), we have R;(GY)~1(&)R! = (GY)~1(&;). Thus
(Ri(G)~H &) Ripi, pi) = (G) 1 (&)pis 0) = (pis P))-
Thus |Ripil(gi)-1(e;) = |pi
(610 6 G) = K (pi, €, G) + K[ (—p, &, G) = K['(0,§,G) = 0.

(9:)-1(¢&) for any covector p;. Then

2K} (|pi

Our claim is proved. O
Remark 9. In the context of the above proof, let us analyze the dependence of
2c12(€,G)D1o It (&)~ on G(€). From

K15(X12,€,G) = Hia(B' (&) X12B%(£2),0,€),
where H 15 is linear in its first argument (see (3.21)), we have
2c19(€, G)Trace(Dio I (&1) ' X12) = Trace(D' B (&) X12B%(&2)),
where D' : (Te, MY, G (&1))* = (Te, M2, G (€,)) depends only on €, and Bi(&) =
B (&) (Te ML GH(&)) = (T ML, GU(&)), Xuz (T M2, G (&) = (T MY G (€)',

Let us write
DipI'(&1)~" = B*(&) Dy, B' (&1)".
Then
Trace(D'B'(¢1)' X12B%(&2)) = 2¢12(€, G) Trace(B? (&) D1, B (61)' X12)
= 2¢12(¢, G) Trace(D, B (&) X128 (&2)).
Thus
2¢12(&,G)Dy = D'.
Multiplying by B?(&2) to the left and by B(£1)? to the right, we have
2c12(§, G) D1 I (61) 7" = B*(&)D'BY (&)

The dependence of ¢15(&, G) D12l (€1) 7! on G is only in B?(&5) (isometry) and B! (&)
(isometry).

If, in addition to the assumptions of Theorem 4.2, we assume that T; satisfies the
axiom of symmetry of the two coordinates, we have ¢11(S§) = ¢22(§). Concerning the
second term, we exploit the expression (4.1), and the axiom of of symmetry of the
two coordinates implies that

Trace(B?(&)D'(€)B' (&1)" X12) = Trace(B' (¢&)D'(S€)B?(&2)" Xa1)
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for all X;5. By transposing in the last expression we can continue the equalities
= Trace(X12 B*(€)D'(5€)" B (&1)") = Trace(B* (&) D'(S)" B! ()" X12)-
Since this holds for any Xi5, we have that
B*(&)D'(€)B'(&)" = B*(&)D'(S€)' B (¢&1)".
This implies that
D(S€) = D/(€)".

4.1. The case of (M",g"(z)) = (RN, g"(x)). To fix ideas we consider M! =
M? =M =RN and gi;(w) to be general metrics in RN, r =1,2. We know that e; =
G"(x)~1/2 f; is an orthonormal basis of (T, M", g"(x)) if f; is a Euclidean orthonormal
basis. Let I"(x) : (RN, g"(z)) — (RN, (¢")~1(x)) be given by I"(z)e; = ;. Then

I"(z) = G"(x).
If B"(z) satisfies B"(z)I" () ' B"(x)! = G"(x)~!, then we can take B"(z) = I.

We can define P(z,y)(v) = G(y)~Y/2G'(x )1/21) v € RN, as the a priori con-
nection of z and y. Then |P( Y|z = |v|p for all (z,y) € R*N. Recall that
Dis : (RN, gl (x)) — (RN,¢%(y)) is an isometry, in this case given by Do =
GQ(y)_l/QGl(x)l/z. Then (4.1) is

2¢15(w,y) D1 2T (2) 7" = 2e1a(2, )G (y) /2 G () 71/,

The PDE obtained is
(4.13) C; = a(,y) A C+2¢12(z, y) Tr(G?(y) V/2GH (2) Y2 Doy O) + ez, y) Aty C,
where

ApeC = Tr(GH () (Dypu(z) — TV (Du)(z))).

The same is true for the operator Aq,.
Remark 10. Note that (first by transposition and then by reordering) we have
Tr(G*(y) " /2GH (2) 72Dy C) = Tr(Dye CGH () "2 G (y)/?)
=Tr(G' ()" V2G2(y) T2 Dy ),
which is a symmetric expression in (z,y). If T} is symmetric in (x,y), then ¢ is also

symmetric.
In the symmetric case, the matrix associated to the operator (4.13) is

( a(z,y)G ()1 cra(a, y)G?(y) ~V/2G ()~ 1/2 )
cra(z,y)G (z) 72 G (y)~ /2 c(z,y)G2(y)~!

It is positive semidefinite if and only if a,c > 0 and ac — ¢35, > 0.

Remark 11. This will permit us to also construct an operator in the case of video.
In that case, N = 3 and M = {(t,z) : t € R,z € R?}. Let us consider the metric
g(t,x);; so that if (s,y) denote the coordinates in T{; ;) M,

(4.14) g(w,t);dzidr; = A(t,x)(y — v(z,t)s)* + B(t,z)s”
As an example, we can take A(t,z) = a + |V,.I|?, B(t,z) = 8+ (0,1)%, o, 3 > 0.
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4.2. The case of conformal metrics in RY. To fix ideas take M = M? =
M =RN and g;(x) = A" ()%, A"(x) > 0 for € R. We can also consider M = TV,
where T represents the circle, assuming that we can deploy functions on T to RY by
parity and periodic extension. In that case, \"(x) is similarly extended. Note the
connection

(@) = % In A" 65 + % In A" 6y, — 8;; In A" 6.
We also have for u(x)
Diget(r) = Dygu(w) =T (Du)(x),
where

I)(Du) := (F)*(2))ij (1) Du(z) = Du®@ DIn A" + DIn A" ® Du— Dln A" - Dul,

where we have denoted by (-x) the contraction (like scalar product) in the variable &
with the coordinates of Du. Thus

Tr(D")(Du)) = —(N — 2)DIn A" - Du.

Note that e; = )\%(w) fi is an orthonormal basis of (RY,\"(x)), when f; is a Eu-
clidean orthonormal basis of RY. Then e; = \"(x)f; is the dual basis. Then the
operator I"(z) : (RN, g"(x)) — (RN, (g")"!(z)) such that I"(z)e; = e} is given by
I"(x) = A\"(x)%1. If B"(x) satisfies B"(z)I"(z)"'B"(x)! = G"(x)~!, then we may
take B"(x) = I.

We define P(x,y)(v) = i:ggv, v € RV, as the a priori connection of  and y.
Then |P(z,y)v|y2 = |v], for all (z,y) € R*N.

Note that

Trg1 (D} gppu(2)) = Tr((G) ()™ DR gpu()) = ﬁx)gﬂ(Dmum‘) — T (Du)(x))
= 1 u(x — n - uz*iv YN 2 Du(z
= iy (Aul@) + (N =2)DIn X Du) = rpssediv (A)(@) ¥ Du(a)

= ———div (V3G @)(¢")(x) " Du()) = Aneulr),

Vdet(g'(z))

which is the Laplace—Beltrami operator.
Let us write (4.1) as

2c12(z,y) D1 oI (2) ! = B*(y) D' (x,y) B (x),

where Dy 5 : (RN, (M) (2)2]) — (RY, (A?)(y)?I) is an isometry, in this case given by
Dis= A (@) 1 Then we have

’ A2(y)
A(x) 1
2 —I=D
ClZ(xay) AQ(y) (/\1)(33)2 (xay)
That is,
DI({E, y) _ ClZ(xa y) I
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Thus, the linear operator on C(t,x,y) can be written as

Ce = Gt (A C+ (N =Dl N(z) D, 0) + 252250 Ty(D,,, C)

N (@)32(y)
(4.15) 5 (A, Cly) + (N = 2)Dy In X2(y) - D,C)
(4.16) Cy = a(z,y)AraC + 2%%(%@) + (@, y) Aty C

for functions a(z,y), c12(z,y), c(x,y) so that the operator is elliptic (that is, if and
only if alvi|? + 2c12 < v1,v2 > +clva]? > 0 for all v,vz). This is the case if and
only if a,c¢ > 0 and ac — c¢3, > 0. Indeed, if the operator is elliptic, then by writing
v1 = ae, va = fe we get aa® + 2c12a + ¢f? > 0 for all «, 3; thus ac — ¢2y > 0. If
ac—cly > 0, then alvy|? +2c12 < v1,v2 > +clva]? > alvi|? — 2|c1a||v1||v2| + c|v2|* > 0.
If T} is symmetric in (z,y), then ¢q2 is also symmetric.

If N =1, we simply have

AT ()
and (4.16) is
(4.17)
_a ~ (o A ()Y c12(7,y) c(z,y) _(In N2 /
Cy —/\1(3:)2(011 (In A (z)) Cw)+2)\l(x)/\2(y)01y+(/\Q(y))Q(ny (In X (y))'Cy).

4.3. The case where (M",g) = (RN, I). Let us start by considering a gen-
eral metric g in RY, and P(£)(v) = v for all v € RY. Then (2.7) is saying that the
metric g is constant and P(€) is also the identity. If P(£)(v) is any a priori connection
map, we have the result stated in Theorem 4.2.

Let us consider the case (M",g) = (R, I). We denote ¢ = (z,y) € RV x RV,
We do not subsume this under the general manifold case, because we can assume a
different set of invariances that permits the operator to have first order terms. Let us
consider translation and rotation invariance.

[Translation invariance] Ty (7,,,C) = 7, T:C  Vt > 0, VC € Cy° (]RNX]RN), Va,b e RY,
where 7,,C(z,y) = C(z + a,y + b).
[Rotation invariance] T;(RC) = RT;C' ¥t >0, VC € C°(RY x RY), VR € O(N),

where RC(z,y) = C(Rxz, Ry). We have denoted by O(N) the rotations in R,

THEOREM 4.3. Let Ty be a multiscale analysis in (RN, I) satisfying the azioms,
including all architectural axioms, the comparison principle, the gray level shift in-
variance, and rotation invariance. Assume that Ty is linear. Then

(4.18) Cy = F(D?C,DC, z),

where

2

F(A v, z2) = Z cij(2)TrA;; + (b(2),p)

i,j=1
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for some functions c¢;j(z) € R, b(z) € R*N, i,j = 1,2, such that ¢;j(R o z) = ¢;j(2),
b(Roz) = Rob(z) for all R € O(N) and all z € R*N. The ellipticity of F implies
that (cij(2)) is a positive definite matriz for all z € R*N.

Moreover, if we assume that T} is translation invariant, then

2
F(A, v, Z) = Z CijTI‘Aij,

ij=1

where Cij are constants.
Note the difference between this and the statement of Theorem 4.2; the difference
is due to the assumption of rotation invariance that involves the action of the rotation

on (x,y).
Thus the PDE is

(419) Cy = cll(z)AzC’ + 2612(2’)T1“(D325y0) + CQQ(Z)AyC
+ (b1(2), D;C) + (b2(2), D, C).

An example is
(4.20) Cy = A,C +2Tx(D2,C) + A, C.

Let C(t,z,y) = [pn 9:(2)C(0,2 + h,y + h) dh, where g, is the Gaussian of scale t.

Then C(t,z,y) is a solution of (4.20) with initial condition C(0,z,y). If C(0,z,y) =

I(z)J(y), then C(t, z,y) := [on ge(2)I(x+h)J (y+h)dh. I C(0,z,y) = (I(x)—J(y))?,

then C(t,z,y) := [pn 9¢(2)(I(x+h) — J(y+h))? dh. Another example is C(0,z,y) =

Zij\il Zi(2)Z:i(y), where Z(z) = (Z;(z))X; is the direction of the gradient of I.
Proof. Observe that if L € GL(N) and Cr(z,y) = C(Lx, Ly), then

([ L'D,C(Lz, Ly)
DCy(z,y) = < L'D,C(Lz,Ly) )’
L'DyyC(La, Ly)L  L'DyyC(Lx, Ly)L
5 o TT ) w ’
D*Cy(z,y) = < L'D,,C(Lz,Ly)L. L'D,,C(Lz,Ly)L )"

To simplify the notation we write DC(x,y) = L' o DC(Lx, Ly) and D2Cy(z,y) =
L' o D?C(Lx, Ly) o L.

Let z = (z,y). By the axioms above, F' = F(A,p, z). As above, from the linearity
of T} we can write

F(A,p,z) = F' (A, z)+ F"(p, 2),
where F’ is linear in A and F” is linear in p. Moreover, if we assume that T} is
translation invariant, then F’, F” do not depend on z.
Then the rotation invariance axiom implies that
F(R'oAoR,R'op,z)=F(A,p,Roz)
forall R € O(N), A€ S(2N) p € R?N 2,y € RN. Thus

F'(R'oAoR,R'oz)+ F'(R'op, R 0 2) = F'(A,2) + F"(p, 2).
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Now, since F’ and F" are linear in their first arguments, we have F’(0,2z) = 0,
F"(0,z) = 0. Thus

(4.21) F'(R'oAoR,R'0z) = F'(A,z),
(4.22) F"(R'op,R'oz)=F"(p,z)

for all values of their arguments. Let us write

A A
A =
< Az As ) ’

where As; = Ajo. By linearity of F’ in its first argument we have
F'(A, 2) = F{1(A11, 2) + 2F{5(Ar2, 2) + Fyp(A22, 2),

where each F;(Ajj, 2) is linear in A;; and F};(R*Ajj R, R'2) = F];(Aij, 2). At 2 fixed,

F};(Aij, 2) is a symmetric linear function of the eigenvalues of A;;, that is, a linear

function of Tr(A;;). That is, there exists ¢;;(z) such that

!
Fl,

(Aij, 2) = cij(2) Tr(Aij).
Moreover, ¢;;(R! o z) = ¢;;(2).

Similarly, for z fixed, F"(p,z) is a linear function of p; that is, there are some
coefficients b(z) = (b1(2),ba(z)) € R?N such that F”(p,z) = (b(2),p). By (4.22) we
have

(b(Roz),Rop) = (b(z),p)  VpeR*N, VR O(N)
and
(4.23) (bi(Roz), Rp;) = (bi(2),p;)  Vp; €RY YR € O(N), Vi=1,2.
This implies that
(4.24) R'b;(Roz)=bi(z) VYReO(N), Vi=1,2.
If we assume that T} is translation invariant, then c¢;;(z) = ¢;; are constants and
b(z) does not depend on z. Then, from (4.24) we deduce that b(z) = 0. Then
2
F(A,p,2)= Y ¢;Trd;. 0O
i,j=1

Remark 12. Let us give some examples of functions b(z). We can take L1, Ly so
that L;(Ro z) = L;(z) for all R € O,(N). Then

o= (720 )

and
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satisfy (4.24).

If, in addtion to the assumptions of Theorem 4.3, we assume that T} satisfies the
axiom of symmetry of the two coordinates, we have ¢11(Sz) = c22(2), c12(Sz) = c12(2)
and by (Sz) = by(z) for all z € R*.

If we assume that T} satisfies the scale invariance axiom,

[Scale invariance] For any A > 0 and ¢ > 0 there exists ¢ > 0 such that
T;(D\C) = D\TC VO € C° (RN x RY), where D\C(x,y) = C(\z, \y),

and t — T} is one-to-one, then using the arguments in [1, section 6, Lemma 1] or in
[16, Chapter 20, Lemma 20.20], after a suitable time rescaling we have

F(\2A, Mp, z) = N2F(A,p, \z).
Then

A2 (c11(2)Tr(A11) 4 2¢12(2)Tr(A12) + coa(2)Tr(Ag2)) + A(b(z),p>
=\2 (611(/\Z)TI‘(A11) + 2612()\Z)TI‘(A12) + CQQ()\Z)TI“(AQQ)) + A2 (b(/\z),p>

We obtain ¢;;(Az) = ¢;;(z) and Ab(Az) = b(z). We obtain that ¢;;(z) = ¢;; are
constants and b(z) is homogeneous of degree —1.
An example is given by

Cy = c11AC + 2012TI‘(D§yC) + ngAyC

(4.25) o

K2
+m 5(DyC.x —y),

|z —yl
where ¢;;, k; are constants. The ellipticity of F' implies that (c;;) is a positive definite
matrix. If ¢;1 = coo and ko = —k1, then we also satisfy the axiom of symmetry with
respect to the change of order of coordinates.

Remark 13. As in the computations done before the proof of Theorem 4.3, let
A, B be two N x N matrices, C(t,z,y) = [pn 9:(2)C(0,2 4 Ah,y + Bh) dh, where g,
is the Gaussian of scale ¢, and C(0,z,y) = (I(x) — J(y))?. Then C(t,z,y) satisfies
the equation

(DC,x —y) +

(4.26) Cy = Trace(A'AD2C) + 2Trace(AB'D,,C) + Trace(BtBDzC).

Note that this equation corresponds to the models described in Theorem 4.2, and
in particular to (1.3), when the metrics are constant in both images. This will be
exploited as a numerical approximation in [10], where the construction of the metrics,
which is a relevant issue, will be discussed in detail. A preliminary result illustrating
the comparison measure is shown in section 6.

5. The morphological axiom. In this section we assume that 7} is a multiscale
analysis satisfying the axioms, including all architectural axioms, the comparison
principle, and the gray level shift invariance.

Let us recall the following axiom:

[Gray scale invariance] T;(f(C)) = f(T;(C)) VYt >0, YO € C2 (M x M?),

and for any strictly increasing function f: R — R.
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It is also called the morphological axiom.

The next lemma can be proved as in [1, 5] (see section 5.1 and Lemma 4.1,
respectively).

LEMMA 5.1. Assume that Ty satisfies all architectural axioms, the comparison
principle, and the morphological axiom.

FOAA+ pup @ p, A\p,&, G, T%) = AF(A,p, &, G, T")
(5.1)
VA € SM¢(WN), Vp e TEN,VE € N VA >0, € R.

-1
Let Q, =1 — g’g%cimg p € TEN\{0}. Then Qp : TeN — TeN and QF - TN —
Tg/\/’ . As in [1, 5] (see section 5.1 and Theorem 4.2, respectively), we prove the
following theorem.
THEOREM 5.2. Let T} be a multiscale analysis satisfying the axioms, including all

architectural axioms, the comparison principle, and the morphological axiom. Then

52 F(A,p,&,G,T") = F(QLAQ,,p. £,G,T")
5.2
VA € SM¢(N), Vp € TEN \ {0}, V€ € V.

A similar statement holds for F. Let B be such that B'\GB = I. In terms of H we
have

H(B'(A—T(p)B, B'p.&) = H(B'Q,(A - T(p))QpB, B'p. £)

VA € SM¢(N), Vp € TEN \ {0}, V€ € N.

(5.3)

By combining the computed invariances (including that with respect to diagonal
rotations) we note the following lemma.

LeEMMA 5.3. We denote here by R a diagonal rotation in the sense given above.
For F we have

F(S,p.&,G.T") = F(R'Q,SQpR, R'p,&, G, T%)
(5.4)
VS € SMe(N), Vp € TEN \ {0}, V€ € .

For H we have
(5.5) H(B'(S —T(p))B, B'p, &) = H(B'R'QL(S — I'(p))Q,RB, B'R'p,§).

At this point we do not make precise the structure of the morphologically invariant
operators, since we cannot simultaneously use the same rotation with respect to both
&1 and & to extract curvatures as in [1, 5]. In section 5.1 below we give some explicit
examples.

5.1. Examples. We use the notation a®@b(x) = (a,2)b, a € Ty N, b,z € TeN (or
when the vectors are in any of the manifolds M?"). We also define [a ® b](z) = (a, x)b,
a,b,x € TeN, so that [a®b] = Ga®b.

We have defined Q, = I —[e, ®ep] = I — %, where e, = %. Then
Qp : TeN — TeN and Q) @ TEN — TYN. Recall that we have GQL9 = Q),G.
Regarding the eigenvalues of a matrix, the matrix acts in the same linear space. Thus
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we speak about the eigenvalues of G™'QLAQ, = GT'QLGGAQ, = QLIG1AQ,,
where A : TN — TiN.

Note that Qpe, = 0 and Que = e for any e € {e,)". Let A1,...,An_1 and 0 be
the N real eigenvalues of G’lQ;AQP. Note that if N = 2,

2

Trace,(Q)AQ,) = Trace(G™'QLAQ,) = > (QLIG ' AQpei, €;)
=1
=M\ = (G AQpe; , Qpey) = (G Aeyr ey ).
We denote

Traceg(Qt AQp) A\
wrve(C) = G T G,

An example is given by functions
F(Aapv 6) = Q(TFQ(Q;AQP)apv 6) VA € SME(N)v Vp € (TEN*vvf € Na

where Q is a nondecreasing function of its first argument. Notice that by taking =0
in (5.1), we have

Q(Ar, Ap,§) = AQ(r,p,§)  VA,r=>0,Vp € (TeN)",VEEN.

Thus, we can write

(5.6) Q(Try(QLAQ,). p.€) = |G|, © (curvgw), ﬁf) |

We can take, in particular,
Cy = |VC|gcurvy(C),
where VC = G~ DC. Other examples are

<P(€)v§1 C, vfz C>

Cy=|VC C
t = |[VClgeurvy (C) + o e,

for o € R.
Let us specify the operator Try(Q}AQ,). Let A € SM¢(N) (A1 = Aly),

Ay A P1
A= =
(A21 1422)7 P <]32>7

Qp =1 Pi @ (Gi)_l(fi)pi.

(G=1(&)p.p)
Then
0 (i, )
P _p1®(€2)_1(52)p2 Q )
(G=1(&p.p) b2
We have

¢ _( M Mo
@pAQy = < My Mas
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with M}, = My;. For simplicity of notation let us write G; ' = (G*)~1(&), |p|? :=
(G (Op,p) = |G 'pl2,

~ ~ Gy 'p2 @ p1 ~ = p1® G5 'ps
My = Q) AnQy, — TA21Q;J1 - ;lAlzT
Gy 'p2 @1 p1® Gy oo
+ 3 22 5] )
Ip| ||
1 1 1
At P2 ®GT P11 Gy pe®@p1 , p2@Gy P11 A, ~
Mz = —Qp, A e + BE e + @y, A12Qp,
Gy 'p2 @ p1 =
_2|TA22QP27
Gi'pr®@p ~ _ _ Gilpr®p p1 @Gy lp
Mo = _#Allen + Qb A2 Qp, + — L2 Ay 2 2
|p[? b2 |p[? |p|?
_ Gl
B ;2A22p1 ® 22 pz7
||
Gi'pi®p: , 1RGP ~ p2@Gi'p Gi'pi @ po ~
My = —1 Ap 1 - Q! An 1 - A12Q
Ip|? p|? P p|? pl? v
+Q;2A22QP2'

Observe that

t At _( Mz My
5QpAQS = ( My M )

Thus, in the case of symmetry in x,y, the function F' is symmetric by interchanging
M11 with M22 and M12 with M21.
Recall that in the PDE context

D C D C D C
A= D2 — M,zx M,zy - D _ M,z )
nC ( DaiyeC DaiyyC )0 U= PNC={ D) C

Ezample 1. The first example is Try(Q)AQ,) = Try(Mi1) 4 Try(Maz). Write
G; = g; = G(&). The traces are

Try, (M11) = Try, (Q;Allém) - %(Azlelpl, G5 'p2)
+ﬁ(pl, Gy 'p1) (A2 Gy 'p1, G5 'pa) + (GIZ#(AQQGQ_%Q, G5 'pa),
Try, (Ma22) = Try, (Q;zAQZQ;Dz) - &(Alnglpz, Gi'p1)
"‘ﬁ(pz, G5 'p2)(A12G5 'p2, GT ' pr) + (GQ;%M(AMGHJDM Gi'p).

This operator satisfies all axioms, including rotation invariance. In the conformal
case, the expressions can be somewhat friendly.

Example 2. We can consider all functions Q(Trg, (Mi1), Try, (M22)) which are
homogeneous of degree 1 and monotone increasing and symmetric in the two variables.
Examples of Q are Q(a,b) = a+ b and Q(a,b) = VaTbt.

Example 3. We can consider all functions Q(Try, (M11), Try, (Ma22), p) which are
homogeneous of degree 1 (see (5.6)) in all variables and monotone increasing and
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symmetric in the first two variables. We can write

|P|Q<| | Trg, (M11), ngg(Mm) > |>

If it does not depend on the last variable

|p|9(| Toy, (M), 1%%2)) — Q(Try, (M), Tryy (Ma2)),

Ip|

we recover Example 2. But we also have

|p|Q<| |Trg1(M11) |1|Trg2(M22)> +Oé<P(€)G1 |§|1’G2 p2>

(P(&)GY 'p1, Gy 'p2)
Ip|

= Q(Try, (M1), Try, (M) + a

)

where a € R. Q is homogeneous of degree 1 and monotone increasing and symmetric
in the two variables. Examples of Q are Q(a,b) = a + b and Q(a,b) = Vatb*.
Ezample 4. A more interesting example is

To(Q)AQy) := Try, (M11) 4 Try, p(Mi2) + Trg, p(Ma1) + Trg, (Mas),
where

Trg, p(Mi2) = TT(P(flan)Gl_lMlz)a
Trg, p(Ma1) = Tr(P(£2.61)Gy Moy ).
Note that the operators G1_1M12 and G5 LMy, are not endomorphisms. Thus, we

need the operators P(&1,&2) and P(&2,&1). Thus, these are mixed traces.
The remaining trace is then

1 1 _ _ _
Trgl7P(M12):_|p|2( (©)GT ALGT 'p1,p2) + E |4( )Gy 'p1,p2) (A1 Gy 'p1, G 'pr)

1 _ _ _ 1 _ _
+W(P(€)Gl 1, p2) (A1 Gy 1, Gy 'pa) + Trg, p(Ar2) — i |2( (6)GT 412Gy 'p2, p2)

1

P
1

p|?

_ _ 1 _ _ _
(P(&)GY 'p1, A Gy 'pr) + W(P(ﬁ)Gl "1, p2)(A12Gy 'p2, Gy ')

_ _ 1 _ _ _
(P(&)Gy ' p1, Aga Gy 'pa) + W(P(ﬁ)Gl 'p1,p2)(A22Gy 2, G5 'pa).

The trace Try, p(M21) has the same expression interchanging the indexes 1 and 2 and
using the a priori connection between & and &1, P(§2,&1). Notice that by definition
is elliptic. It is also rotation invariance since traces are.

We can also consider the operator

(P(&)Gy 'p1, G5 'p2)

3

where o € R. » »
Remark 14. Note that ‘LE&% ‘5‘1’% p2) corresponds to —(P(g)vélcc,v52c>

VCl,
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Fia. 1. Illustration of a similarity measure. The values of the similarity measure are computed
between one point x in the reference image (first row, left) and all points y of the secondary image
(first row, right), which is taken from a different viewpoint. In the second row we show a close-up
containing the point x and the value of the similarity measure. Red pizels denote lower values of
C(t,z,y). Note that the minima of the similarity measure occur at the points where the structure of
the secondary image is similar to the reference patch. The comparison windows are ellipses which
correspond to the unit ball mapped according to A and B. The third row illustrates the similarity
landscape for a larger scale. Varying the scale of the analysis corresponds in this case to increasing
the window size.

Let us observe that the expression (P(&)Gl_lpl, G35 1py) is invariant with respect
to diagonally related rotations. Let v; € Te, M. Let R = (R1, R2) be a diagonally
related rotation so that

(5.7) Ry = P(§)R1P(€)™"

Let us recall that given an isometry (rotation) in the tangent plane, covector gradients
p; transform as R'p;. Its associated vector is G 'Rlp; = RbIG; 'p; = Rb9v; where
V; = G;lpi is the vector associated to p;.

Since RY = R; !, we write (5.7) as

P(§)Ry? = Ry7P(€).
Then
(P()Ry%v1, Ry%v2) = (RyIP(&)vy, RyIv2) = (P(&)vy,v2).

This is the required invariance.
Remark 15. In the conformal case, the expressions can be somewhat friendly. In
the conformal case, we have

Try, p(Mi2) = Trg, p(M21) = Tr(M2),

A (2)A%(y)
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<P<£>G;}p|1,c:;1p2>
p

and the term writes as

o
A (2)A%(y)

Remark 16. The next example does not fall under either of the classes above. Is
is neither morphologically invariant nor linear. We construct it as the sum of a linear
operator and a first order one that satisfies the morphological invariance

(D,C,D,C).

(5.8)  Cp= %AMIC + z%mpwm + %ch
(P(§)Ve, C, Ve, C)
Ve, ’

where ao € R. Note that the operator is homogeneous of degree 1 in C.

6. Conclusions. In this paper we define a multiscale comparison of images de-
fined on Riemannian manifolds. Given two images u and v, we introduce intrinsic
multiscale similarity measures to compare their neighborhoods at the points z,y € R2,
respectively. This could be also applied to the problem of comparing two patches of an
image defined on a Riemannian manifold, which can be defined on the image domain
with a suitable metric depending on the image. This paper contains mostly theoret-
ical results, some (mostly linear) examples of such measures, and the case of some
morphological scale spaces. These similarity measures are useful for the purpose of
computing disparities and correspondences, and determining the most similar patch,
which will be the subject of a future paper [10].

We include here a preliminary result illustrating the comparison measure proposed
in Remark 13. For this measure the matrices A and B are related to the prior
connection. They are defined using anisotropic metrics on the images which are
similar to those used in [5]. Figure 1 illustrates the values C(t,x,y) of this similarity
measure computed between a fixed point = in the reference image and all points y of
the secondary image, which is taken from a different viewpoint. Note that the peaks
of the similarity measure occur at the points where the structure of the secondary
image is similar to the reference patch. We depict the comparison windows on some
of the points. The comparison windows are ellipses which correspond to the unit ball
mapped according to A and B. The second row illustrates the similarity landscape for
a larger scale. Varying the scale of the analysis corresponds in this case to increasing
the window size.
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