Syndicate content


Export 110 results:
Sort by: Author Title [ Type  (Desc)] Year
Filters: Author is V. Caselles  [Clear All Filters]
Journal Article
Caselles, V., Jalalzai K., & Novaga M. (2013).  On the jump set of solutions of the Total Variation flow. Rendiconti Sem. Matematico della Università di Padova.
Palma, R., Provenzi E., Bertalmío M., & Caselles V. (2009).  A Perceptually Inspired Variational Framework for Color Enhancement. IEEE transactions on Pattern Analysis and Machine Intelligence. 31(1), 458-474.
Bernot, M., Caselles V., & Morel J. M. (2008).  The structure of branched transportation networks. Calculus of Variations and Partial Differential Equations. 32, 279–317.
Caselles, V., Chambolle A., & Novaga M. (2010).  Total Variation in Imaging. Handbook of Mathematical Methods in Imaging, Springer Verlag.
Ballester, C., Caselles V., & Monasse P. (2003).  The tree of shapes of an image. ESAIM CONTROLE OPTIMISATION ET CALCUL DES VARIATIONS. 9, 1-18.
Ballester, C., Caselles V., Rougé B., & Verdera J. (2003).  Une méthode géométrique de fusion pour des images P+XS. Société Française de Photogrammétrie et de Télédétection. 169, 53-64 (Choosed one of the 5 best algorithms of P+XS image fusion by the French Spatial Agency CNES) .
Alter, F., & Caselles V. (2009).  Uniqueness of the Cheeger set of a convex body. Nonlinear Analysis: Theory, Methods & Applications. 70, 32–44.