Syndicate content

Biblio

Export 51 results:
Sort by: [ Author  (Desc)] Title Type Year
Filters: First Letter Of Last Name is C  [Clear All Filters]
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Caselles, V. (2013).  Variational models for image inpainting. Proceedings of the European Congres of Mathematics, Krakow.
Caselles, V., Facciolo G., & Meinhardt E. (2009).  Anisotropic Cheeger Sets and Applications. SIAM Journal on Imaging Sciences. 2(4), 1211-1254.
Caselles, V., Chambolle A., Cremers D., Novaga M., & Pock T. (2010).  An Introduction to Total Variation in image analysis. (Massimo Fornasier, Ed.).Theoretical Foundations and Numerical Methods for Sparse Recovery.
Caselles, V., Jalalzai K., & Novaga M. (2013).  On the jump set of solutions of the Total Variation flow. Rendiconti Sem. Matematico della Università di Padova.
Caselles, V., Chambolle A., Moll S., & Novaga M. (2008).  A characterization of convex calibrable sets in with respect to anisotropic norms. Annales de l'Institut Henri Poincare (C) Non Linear Analysis. 25, 803–832.
Caselles, V., Chambolle A., & Novaga M. (2010).  Total Variation in Imaging. Handbook of Mathematical Methods in Imaging, Springer Verlag.
Caselles, V., Sapiro G., Solé A., & Ballester C. (2004).  Morse description and morphological encoding of continuous data. SIAM Journal Multiscale Modeling & Simulation. 2(2), 179-209.
Caselles, V. (2011).  An existence and uniqueness result for flux limited diffusion equations. Communications on Pure and Applied Analysis, special volume in honor to Ennio de Giorgi and Guido Stampacchia. To appear,