Syndicate content

Biblio

Export 51 results:
Sort by: [ Author  (Desc)] Title Type Year
Filters: First Letter Of Last Name is C  [Clear All Filters]
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Caselles, V., Chambolle A., Cremers D., Novaga M., & Pock T. (2010).  An Introduction to Total Variation in image analysis. (Massimo Fornasier, Ed.).Theoretical Foundations and Numerical Methods for Sparse Recovery.
Caselles, V. (2013).  Variational models for image inpainting. Proceedings of the European Congres of Mathematics, Krakow.
Caselles, V., Chambolle A., Moll S., & Novaga M. (2008).  A characterization of convex calibrable sets in with respect to anisotropic norms. Annales de l'Institut Henri Poincare (C) Non Linear Analysis. 25, 803–832.
Caselles, V., Facciolo G., & Meinhardt E. (2009).  Anisotropic Cheeger Sets and Applications. SIAM Journal on Imaging Sciences. 2(4), 1211-1254.
Caselles, V. (2011).  An existence and uniqueness result for flux limited diffusion equations. Communications on Pure and Applied Analysis, special volume in honor to Ennio de Giorgi and Guido Stampacchia. To appear,
Caselles, V., Jalalzai K., & Novaga M. (2013).  On the jump set of solutions of the Total Variation flow. Rendiconti Sem. Matematico della Università di Padova.
Caselles, V., Sapiro G., Solé A., & Ballester C. (2004).  Morse description and morphological encoding of continuous data. SIAM Journal Multiscale Modeling & Simulation. 2(2), 179-209.
Caselles, V., Chambolle A., & Novaga M. (2010).  Total Variation in Imaging. Handbook of Mathematical Methods in Imaging, Springer Verlag.